

Repubblica Italiana

Dipartimento delle Infrastrutture e della mobilità e dei trasporti Servizio 8 - Infrastrutture marittime e portuali

POTENZIAMENTO DELLE OPERE MARITTIME ESISTENTI PER LA MESSA IN SICUREZZA E PROLUNGAMENTO DIGA FORANEA DEL PORTO DI CASTELLAMMARE DEL GOLFO (TP)

PROGETTO DEFINITIVO

Gruppo di Progettazione

Ing. Paolo Atzeni Ing. Adamo Calì Ing. Salvatore Torrisi

II RUP

Geom. Giuseppe Bruno

Dipartimento regionale delle infrastrutture, della Mobilità e dei Trasporti

Il Dirigente del Servizio 8 Arch. Carmelo Ricciardo

Titolo elaborato:

RELAZIONE DI CALCOLO MURO PARAONDE

CODICE ELA	ABORATO: 01_ED_RE_06	REVISIONE:	В	SCALA:	-
В	EMISSIONE A SEGUITO DI RAPPORTO DI VERIFICA	GIUGNO 2021	S. TORRISI	P.ATZENI	D. CIANCIOLO
А	PRIMA EMISSIONE	FEBBRAIO 2021	S. TORRISI	P.ATZENI	D. CIANCIOLO
REV.	DESCRIZIONE	DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1.	PREMESSA	3
2.	DESCRIZIONE DELLE OPERE	3
ľ	Muro paraonde	4
3.	NORMATIVE DI RIFERIMENTO	5
4.	CARATTERISTICHE DEI MATERIALI	5
(Calcestruzzi	5
A	Acciaio d'armatura	7
5.	PARAMETRI E COEFFICIENTI SISMICI	8
ľ	Masse sismiche associate	9
F	Parametri sismici	9
6.	CRITERI DI PROGETTAZIONE E DI CALCOLO	11
ľ	Metodi di verifica e considerazioni di progetto	11
(Criteri di modellazione	12
7.	CALCOLI IDRAULICI	20
8.	ANALISI DEI CARICHI	21
(Condizioni di carico	21
(Combinazioni di carico	24
9.	DATI	26
(Geometria profilo terreno a monte del muro	26
(Geometria muro	26
	Descrizione terreni	27
(Condizioni di carico	29
(Opzioni di calcolo	29
10.	RISULTATI PER INVILUPPO	32
5	Spinta e forze	32
١	Verifiche geotecniche	34
5	Sollecitazioni	39
١	Verifiche strutturali	43
11.	Dichiarazioni secondo N.T.C. 2018 (punto 10.2)	68

INDICE DELLE FIGURE

Figura 1 – Planimetria generale	3
Figura 2 – Sezione tipo	4
Figura 3 – Sezione muro paraonde	4
Figura 4 – Schema di calcolo delle sollecitazioni del moto ondoso sul massiccio o coronamento2	
Figura 5 – Pressioni nell'intradosso del massiccio in funzione della sua larghezza relativ	
Figura 6 – Schema nomenclatura elementi2	3
Figura 7 – Sezione quotata del muri2	7
Figura 8 – Stratigrafia2	8
Figura 9 – Cuneo di spinta (combinazione statica) (Combinazione n. 1)3	2
Figura 10 – Diagramma delle pressioni (combinazione statica) (Combinazione n. 1)3	3
Figura 11 – Cuneo di spinta (combinazione sismica) (Combinazione n. 2)3	3
Figura 12 – Diagramma delle pressioni (combinazione sismica) (Combinazione n. 2)3	4
Figura 13 – Stabilità fronte scavo – Cerchio critico (Combinazione n. 6)3	9
Figura 14 – Paramento4	1
Figura 15 – Fondazione4	3
Figura 16 – Paramento (Inviluppo)4	7
Figura 17 – Paramento (Inviluppo)5	1
INDICE DELLE TABELLE	
Tabella I – Valori dei coefficienti <i>a</i> , <i>b</i> e <i>c</i> in funzione della larghezza relativa della berm2	
Tabella II – Dimensioni geometriche2	3
Tabella III – Spinte ottenute2	4

1. PREMESSA

La presente relazione riguarda i calcoli di stabilità, anche sotto l'azione sismica, del muro paraonda previsto nell'ambito della progettazione definitiva del progetto di "Potenziamento delle opere marittime esistenti per la messa in sicurezza e prolungamento diga foranea del porto di Castellammare del Golfo (TP)".

Le scelte progettuali sono state condotte in modo da definire opere sicure e di adeguata durata sulla base dei criteri di economicità e dei vincoli idraulici, strutturali, geotecnici, ambientali, paesaggistici e geomorfologici.

Le soluzioni adottate sono state esaminate con l'ausilio dei codici di calcolo (modelli matematici) idraulico-marittimo per verificarne le prestazioni in termini di protezione dal moto ondoso, tranquillità delle aree portuali nei confronti di venti e correnti, di navigabilità, e di inserimento ambientale.

2. DESCRIZIONE DELLE OPERE

Il progetto prevede la realizzazione di un impalcato banchina fondato su pali avente lunghezza pari a 152 m ed un muro di coronamento avente funzione di paraonde della lunghezza di 157 m. A tergo della struttura così composta e proseguendo per tutta l'estensione del molo foraneo, si prevede una scogliera lato mare costituita da massi naturali e da massi artificiali della tipologia Accropode™.

Nella figura successiva si riporta uno stralcio planimetrico della configurazione in progetto.

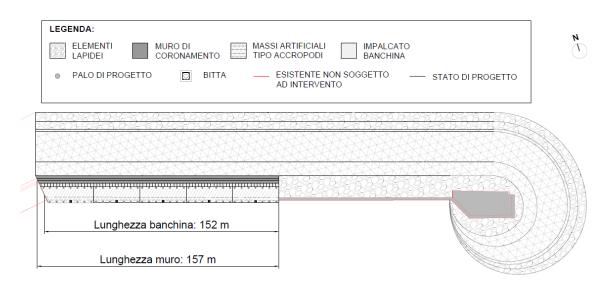


Figura 1 – Planimetria generale

Nella successiva figura si riporta invece la sezione tipo nel tratto in corrispondenza della banchina e del muro di coronamento di nuova realizzazione.

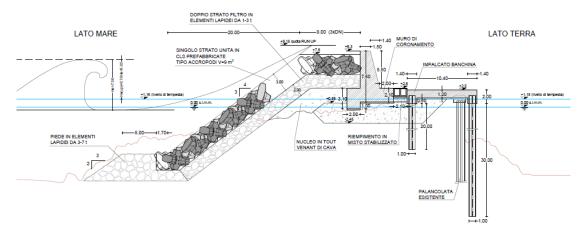


Figura 2 – Sezione tipo

Muro paraonde

Si tratta di un muro a gravità costituito da una fondazione larga 6.90 m ed alta 2.10 m nella quale, nella porzione di monte, è presente un dente di fondazione alto 1.00 m e spesso 2.00 m. Il paramento, alto 5.50 m, risulta inclinato, con spessore alla base di 2.90 m ed in testa di 1.50 m. Di seguito si riporta la sezione.

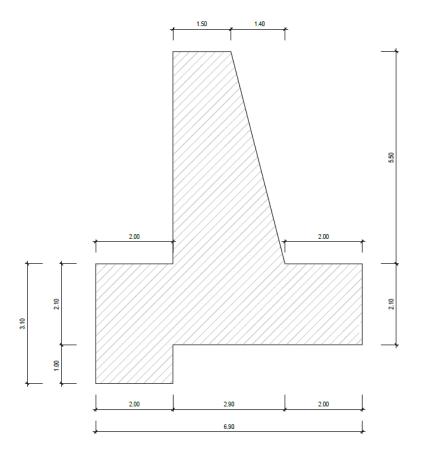


Figura 3 – Sezione muro paraonde

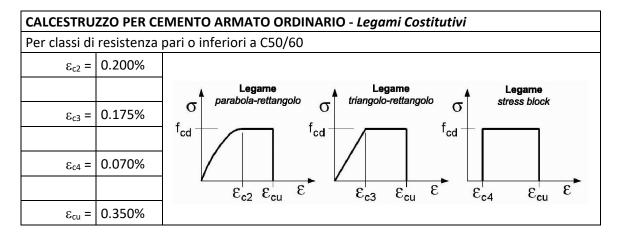
3. NORMATIVE DI RIFERIMENTO

[1] Legge nr. 1086 del 05/11/1971.

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

[2] Legge nr. 64 del 02/02/1974.

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.


[3] Norme Tecniche per le Costruzioni 2018 (D.M. 17 Gennaio 2018)

[4] Circolare del 21/01/2019 n. 7

Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni di cui al D.M. 17 gennaio 2018.

4. CARATTERISTICHE DEI MATERIALI

Calcestruzzi

Caratteristiche Generali							
cl-res =	C35\45		Classe di Resistenza				
cl-esp =	XS3		Classe di Esposizione				
Cond. Ambientale =	Molto Aggre	ssive	Condizioni Ambientali				
Cemento =			Tipo di Cemento				
Dosaggio =	400	kg/mc	Dosaggio del Cemento				
Rapporto A/C =	0.45		Rapporto acqua / cemento				
Cl max =		%	Contenuto massimo di cloruri				
aggr max =	25 mm		Dimensione nominale massima degli Aggregati				
res gelo =			Inerti resistenti al Gelo				
Cons =	S4 - Fluida		Consistenza				
c =	50	mm	Copriferro minimo				
r =	40	mm	Ricoprimento minimo				

Valori Caratteristici			
R _{ck} =	45	MPa	Resistenza caratteristica cubica a compressione
f _{ck} =	f _{ck} = 37.35		Resistenza caratteristica cilindrica a compressione
f _{ctk.5%} =	2.35	MPa	Resistenza caratteristica a trazione semplice - frattile 5%
f _{ctk.95%} =	4.36	MPa	Resistenza caratteristica a trazione semplice - frattile 95%
f _{cfk.5%} =	2.82	MPa	Resistenza caratteristica a trazione per flessione - frattile 5%
f _{cfk.95%} =	5.23	MPa	Resistenza caratteristica a trazione per flessione - frattile 95%
Valori Medi			
f _{cm} =	45.35	MPa	Resistenza media cilindrica a compressione
f _{ctm} =	3.35	MPa	Resistenza media a trazione semplice
f _{cfm} =	4.023	MPa	Resistenza media a trazione per flessione
E _{cm} =	34625.4852	MPa	Modulo Elastico
Resistenze di Calcolo	o - SLU		
γ _c =	1.5		Coefficiente parziale di sicurezza per il calcestruzzo
α_c =	0.85		Coefficiente per i carichi di lunga durata
Resistenza di calcolo	a compressio	<u>ne</u>	
$f_{cd} =$	21.17	MPa	Resistenza di Calcolo a compressione
f _{cd.sp<50} =	16.93	MPa	Resistenza di Calcolo a compressione ridotta per elementi piani con Sp < 50 mm
Resistenza di calcolo	a trazione		
f _{ctd} =	1.56	MPa	Resistenza di Calcolo a trazione semplice
f _{ctd.sp<50} =	1.25	MPa	Resistenza di Calcolo a trazione semplice ridotta per elementi piani con Sp < 50 mm
$f_{cfd} =$	1.88	MPa	Resistenza di Calcolo a trazione pre flessione
f _{cfd.sp<50} =	1.50	MPa	Resistenza di Calcolo a trazione per flessione ridotta per elementi piani con Sp < 50 mm
Resistenze di Calcolo	o - Azioni Ecce	zionali	
γ _c =	1.00		Coefficiente parziale di sicurezza per il calcestruzzo
α _c =	0.85		Coefficiente per i carichi di lunga durata
Resistenza di calcolo	a compressio	<u>ne</u>	
f _{cd} =	31.75	MPa	Resistenza di Calcolo a compressione
f _{cd.sp<50} =	25.40	MPa	Resistenza di Calcolo a compressione ridotta per elementi piani con Sp < 50 mm

Resistenza di calcolo a trazione								
f _{ctd} =	2.35	MPa	Resistenza di Calcolo a trazione semplice					
f _{ctd.sp<50} =	f _{ctd.sp<50} = 1.88		Resistenza di Calcolo a trazione semplice ridotta per elementi piani con Sp < 50 mm					
f _{cfd} =	2.82	MPa	Resistenza di Calcolo a trazione pre flessione					
f _{cfd.sp<50} = 2.25		MPa	Resistenza di Calcolo a trazione per flessione ridotta per elementi piani con Sp < 50 mm					
Resistenze di Calcolo - SLE								
σ _c =	22.41	MPa	tens. max calcestruzzo - combinazione rara					
σ _c =	σ _c = 16.8075		tens. max calcestruzzo - combinazione quasi permanente					
Tensioni Ammissibili								
Rck =	45		Resistenza caratteristica cubica a compressione					
Ec =	38237	MPa	Modulo Elastico					
γc =	25	kN/m³	Peso Specifico					
fcd =	23.34375	MPa	Tensione di Snervamento					
σ amm c =	13.5	MPa	Tensione Ammissibile					
$ au_{c0} =$	$ au_{c0} = 0.800$ MPa tir		t in assenza armatura a taglio					
$ au_{c1} =$	2.257	MPa	t in presenza di armatura a taglio					
n =	15		Coff. Omogenizzazione					

Acciaio d'armatura

ACCIAIO PER CEM	ACCIAIO PER CEMENTO ARMATO B450C							
Valori Caratteristici								
f _{y.nom} =	450	MPa	MPa Valore nominale della tensione di snervamento					
f _{t.nom} =	540	MPa	MPa Valore nominale della tensione di rottura					
E _S =	206000	MPa	Modulo Elastico					
Requisiti prescritti								
f _{vk.5%} ≥	f _{y.nom}	Valore o	Valore caratteristici con frattile 5% della tensione di snervamento (da prove					
Tyk.5% ≤	Ty.nom	su campioni in numero significativo)						
 f _{tk.5%} ≥	f _{t.nom}	Valore caratteristici con frattile 5% della tensione di rottura (da prove su						
¹tk.5% ≤		campio	ni in numero significativo)					
$(f_y/f_{y.nom})_{k.10\%}$	≤ 1.25	Valore	caratteristico con frattile del 10% del rapporto tra la tensione di					
('y / 'y.nom /k.10%		snervan	nento effettiva, riscontrata sulla barra, ed il relativo valore nominale					
(f _t / f _y) _{k.10%}	≥ 1.25	Valore	Valore caratteristico con frattile del 10% del rapporto tra la tensione d					
('t / 'y /k.10%	< 1.35	rottura effettiva e la tensione di snervamento						
(A _{gt}) _{k.10%}	≥ 7.5 %	Valore caratteristico con frattile 10% dell'allungamento al massimo sforzo						
ø < 12 mm	4 ø							
12 ≤ ø ≤ 16 mm	5 ø	Diametro del mandrino per prove di piegamento a 90° e successivo						
16 < ø ≤ 25 mm	8 ø	raddrizzamento senza formazione di cricche:						
25 < ø ≤ 40 mm	10 ø							

Resistenze di Calcolo – SLU							
γ _s =	1.15		Coefficiente parziale di sicurezza per l'acciaio				
f _{yd} =	391.30	MPa	Resistenza di Calcolo a trazione				
ϵ_{yd} =	0.190%	MPa	Deformazione a snervamento per trazione				
Resistenze di Calcolo - SLE							
γ _s =	1.00		Coefficiente parziale di sicurezza per il calcestruzzo				
f _{yd} =	450.00	MPa	Resistenza di Calcolo a trazione				
ε _{yd} =	0.218%		Deformazione a snervamento per trazione				

5. PARAMETRI E COEFFICIENTI SISMICI

Per il calcolo sismico dell'opera in esame si è fatto riferimento alle indicazioni del NTC 2018 che introducono il concetto di "pericolosità sismica di base" come elemento di conoscenza primario per la determinazione delle azioni sismiche. Tale pericolosità è quella relativa a condizioni ideali di sito con superficie topografica orizzontale e terreno di tipo rigido (Categoria A).

Le indicazioni sulla pericolosità sismica di base dell'intero territorio nazionale è fornita dalla predetta normativa, in termini di:

- **a**_q accelerazione orizzontale massima del terreno;
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T^{*}_C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale:

Per ciascun nodo del reticolo di riferimento con maglia di circa 10 km in cui è stato suddiviso l'intero territorio nazionale. Tali parametri sono forniti anche in funzione di ciascuno dei periodi di ritorno T_R considerati dalla pericolosità sismica; in particolare:

$$T_R$$
 = 30; 50; 72; 101; 140; 201; 475; 975 e 2475 anni.

Il periodo di ritorno dell'azione sismica T_R è ricavabile mediante la relazione:

$$T_{R} = -\frac{V_{R}}{In(1-P_{V_{R}})}$$

dove:

- V_R Vita di riferimento per l'azione sismica
- P_{V₂} Probabilità di superamento nel periodo di riferimento

Nel caco in cui la *pericolosità sismica* su *reticolo di riferimento* con contempli il periodo di ritorno T_R corrispondente alla V_R e alla P_{V_R} fissate, il generico parametro caratterizzante la *pericolosità sismica di base* può essere ricavato mediante interpolazione logaritmica.

La vita di riferimento per l'azione sismica V_R è funzione della *Vita nominale della struttura* V_N , intesa come il numero di anni le quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo cui è destinata; e della *classe d'uso* C_U della stessa:

$$V_R = V_N \cdot C_U$$

La probabilità di superamento nel periodo di riferimento P_{V_R} è funzione dello stato limite considerato:

Tabella 3.2.I – Probabilità di superamento P_{V_p} al variare dello stato limite considerato

Stati Lim	ite	P_{V_R} : Probabilità di superamento nel periodo di riferimento \mathbf{V}_R
Stati limite di esercizio	SLO	81%
	SLD	63%
Stati limite	SLV	10%
ultimi	SLC	5%

Masse sismiche associate

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai soli pesi propri e sovraccarichi permanenti.

Parametri sismici

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai soli pesi propri e sovraccarichi permanenti.

Nel caso in esame si è pertanto considerato:

Parametro	Valore		Descrizione	Rif. NTC18
Vita Nominale	V _N = 100	anni	Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	§ 2.4.1
Classe d'uso	CI = IV	-	Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico.	§ 2.4.2

Parametro	Valore			Descrizione	Rif. NTC18
				Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.	
Coefficiente d'uso	C _U =	2.0	-		§ 2.4.3
Periodo di Riferimento per l'azione sismica	V _R =	200	anni		§ 2.4.3
Smorzamento	ξ=	5%			
Fattore di Struttura	q =	1.5			

Cui corrispondono:

	Stato Limite		P _{VR}	T _R [anni]				
Stati Limita di Fagraizia	SLO	Operatività	81%	120				
Stati Limite di Esercizio	SLD	Danno	63%	201				
Chati Limita I Iltimi	SLV	Salvaguardia della Vita	10%	1898				
Stati Limite Ultimi	SLC	Collasso	5%	2475				
* per TR > 2475 anni si assume TR = 2475 come previsto dall'Allegato A delle NTC18								

La pericolosità sismica di base così determinata viene poi tramutata in *risposta sismica locale*, mediante degli opportuni coefficienti di amplificazione. Essi apportano delle variazioni così da poter tener conto delle condizioni del sito di ubicazione dell'opera sia in termini di stratigrafia del sottosuolo che di morfologia della superficie.

In relazione alle modalità di calcolo dell'azione sismica secondo le NTC 2018, i parametri sismici ascrivibili al sito di ubicazione dell'opera (funzione tra l'altro proprio delle coordinate geografiche) sono riportati nella tabella seguente.

OPERA:	Muro	paraonde							
COMUNE:	Caste	ellammare del C	Solfo						
PROVINCIA:	Trapa	rapani							
LATITUDINE:	38.01	38.0199							
LONGITUDINE:	12.88	12.8867							
CATEGORIA SOTTOSUOLO:	D	Depositi di terreni a grana grossa mediamente addensati o di terreni a grana fine scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.							
CATEGORIA TOPOGRAFICA:	T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°							
Stato Limite	9		P _{VR}	T _R [anni]	a _g [9]	<i>F</i> ₀ [-]	<i>T</i> * _c [s]	Ss	S _T
Stati Limite di Esercizio	SLO	Operatività	81%	120	0.054	2.438	0.267	1.80	1.00
Stati Limite di Esercizio	SLD	Danno	63%	201	0.067	2.453	0.284	1.80	1.00
Stati Limite Ultimi	SLV	Salvaguardia della Vita	10%	1898	0.154	2.558	0.339	1.80	1.00
	SLC	Collasso	5%	2475	0.169	2.576	0.345	1.75	1.00
* per TR > 247	5 anni	si assume TR =	= 2475	come pre	evisto dall'	Allegato A de	elle NTC18	3	

In cui si è distinto tra i 4 differenti stati limite introdotti dalla normativa di riferimento, due *Stati Limite di Esercizio*:

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

e due Stati Limite Ultimi:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la
 costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici
 e significativi danni dei componenti strutturali cui si associa una perdita
 significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione
 conserva invece una parte della resistenza e rigidezza per azioni verticali e un
 margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la
 costruzione subisce gravi rotture e crolli dei componenti non strutturali ed
 impiantistici e danni molto gravi dei componenti strutturali; la costruzione
 conserva ancora un margine di sicurezza per azioni verticali ed un esiguo
 margine di sicurezza nei confronti del collasso per azioni orizzontali.

6. CRITERI DI PROGETTAZIONE E DI CALCOLO

Metodi di verifica e considerazioni di progetto

Le analisi e le verifiche strutturali sull'opera in esame sono state condotte nel pieno rispetto delle Nuove Norme Tecniche per le Costruzioni adottando, di conseguenza, un approccio di calcolo di tipo prestazionale basato sul ricorso del *Metodo degli Stati Limite*, espresso formalmente dalla seguente disequazione:

Rd > Ed

dove Rd è la resistenza di progetto ed Ed è il valore di progetto dell'effetto delle azioni, e sulle nuove modalità di calcolo delle *Azioni Sismiche*. In particolare queste ultime risultano funzione di vari parametri così sintetizzabili:

• Prestazioni attese per l'opera, intese in termini di Stati Limite secondo cui effettuare la verifica ed anche in termini di Vita Nominale della Struttura V_N , intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere utilizzata per lo scopo cui è destinata.

- Classe d'uso della costruzione parametro che tiene conto del grado di affollamento cui può essere soggetta la struttura nel corso della sua vita.
- Micro zonazione sismica. Viene superato l'obsoleto concetto di zona sismica così da condurre la valutazione delle azioni sismiche di progetto a dei parametri di pericolosità sismica locali, determinabili in funzione delle precise coordinate geografiche di ubicazione dell'opera in base ai valori forniti dalla normativa stessa.
- Caratteristiche Geomorfologiche e topografiche del sito di ubicazione dell'opera mediante opportuni coefficienti correttivi.

Criteri di modellazione

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del D.M. 17/07/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

6.1.1. Calcolo della spinta sul muro

Valori caratteristici e valori di calcolo

Effettuando il calcolo tramite gli Eurocodici è necessario fare la distinzione fra i parametri caratteristici ed i valodi di calcolo (o di progetto) sia delle azioni che delle resistenze.

I valori di calcolo si ottengono dai valori caratteristici mediante l'applicazione di opportuni coefficienti di sicurezza parziali γ . In particolare si distinguono combinazioni di carico di tipo **A1-M1** nelle quali vengono incrementati i carichi e lasciati inalterati i parametri di resistenza del terreno e combinazioni di carico di tipo **A2-M2** nelle quali vengono ridotti i parametri di resistenza del terreno e incrementati i soli carichi variabili.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di falda

Nel caso in cui a monte del muro sia presente la falda il diagramma delle pressioni sul muro risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso specifico dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove $\theta = arctg(C)$ essendo C il coefficiente di intensità sismica.

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Lambda S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

6.1.2. Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante M_r) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante M_s) rispetto allo spigolo a valle della fondazione e verificare che il rapporto M_s/M_r sia maggiore di un determinato coefficiente di sicurezza η_r .

Deve quindi essere verificata la seguente diseguaglianza

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

6.1.3. Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

$$F_r$$
 F_s

Le forze che intervengono nella F_s sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

Nel caso di fondazione con dente, viene calcolata la resistenza passiva sviluppatasi lungo il cuneo passante per lo spigolo inferiore del dente, inclinato dell'angolo ρ (rispetto all'orizzontale). Tale cuneo viene individuato attraverso un procedimento iterativo. In dipendenza della geometria della fondazione e del dente, dei parametri geotecnici del terreno e del carico risultante in fondazione, tale cuneo può avere forma triangolare o trapezoidale. Detta N la componente normale del carico agente sul piano di posa della fondazione, Q l'aliquota di carico gravante sul cuneo passivo, S_p la resistenza passiva, L_c l'ampiezza del cuneo e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terreno-fondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = (N-Q) \text{ tg } \delta_f + S_p + c_a L_r$$

 $con L_r = B_r - L_c$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

6.1.4. Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q . Cioè, detto Q_u , il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

L'espressione del carico ultimo è data dalla relazione:

$$Q_u = c N_c d_c i_c + q N_q d_q i_q + 0.5 \gamma B N_\gamma d_\gamma i_\gamma$$

In questa espressione

- c coesione del terreno in fondazione;
- angolo di attrito del terreno in fondazione;
- γ peso di volume del terreno in fondazione;
- B larghezza della fondazione;

D profondità del piano di posa;

q pressione geostatica alla quota del piano di posa.

I vari fattori che compaiono nella formula sono dati da:

$$A = e^{\pi tg \phi}$$

$$N_q = A tg^2(45^{\circ} + \phi/2)$$

$$N_c = (N_q - 1) \operatorname{ctg} \phi$$

$$N_{y} = (N_{q} - 1) tg (1.4\phi)$$

Indichiamo con K_p il coefficiente di spinta passiva espresso da:

$$K_p = tg^2(45^{\circ} + \phi/2)$$

I fattori d e i che compaiono nella formula sono rispettivamente i fattori di profondità ed i fattori di inclinazione del carico espressi dalle seguenti relazioni:

Fattori di profondità

$$d_q = 1 + \frac{0.2D}{R} k_p^{0.5}$$

$$d_q = d_\gamma = 1$$

per
$$\phi = 0$$

$$d_q = d_r = 1 + \frac{0.1D}{R} k_p^{0.5}$$
 $per \, \phi > 0$

$$per \phi > 0$$

Fattori di inclinazione

Indicando con θ l'angolo che la risultante dei carichi forma con la verticale (espresso in gradi) e con ϕ l'angolo d'attrito del terreno di posa abbiamo:

$$i_c = i_q = (1 - \theta^{\circ}/90)^2$$

$$i_{\gamma} = \left(1 - \frac{\theta^{\circ}}{\phi}^{\circ}\right)^{2} \quad per \ \phi > 0$$

$$i_{\gamma} = 0$$

per
$$\phi = 0$$

Riduzione per eccentricità del carico

Progetto Definitivo Potenziamento delle opere marittime esistenti per la messa in sicurezza e prolungamento diga foranea del porto di Castellammare del Golfo (TP)

Relazione di calcolo muro paraonde

Nel caso in cui il carico al piano di posa della fondazione risulta eccentrico, Meyerhof propone di moltiplicare la capacità portante ultima per un fattore correttivo R_e

dove:

$$R_e = 1.0 - (e/B)^{0.5}$$
 per terreni incoerenti

con e eccentricità del carico e B la dimensione minore della fondazione.

Riduzione per effetto piastra

Per valori elevati di B (dimensione minore della fondazione), Bowles propone di utilizzare un fattore correttivo r_{γ} del solo termine sul peso di volume (0.5 B γ N $_{\gamma}$) quando B supera i 2 m.

$$r_{\gamma} = 1.0 - 0.25 \log (B / 2.0)$$

Il termine sul peso di volume diventa:

$$0.5 B \gamma N_{\gamma} r_{\gamma}$$

Verifica alla stabilità globale

La verifica alla stabilità globale del complesso muro + terreno deve fornire un coefficiente di sicurezza non inferiore a η_{α} .

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

dove il termine m è espresso da

Progetto Definitivo Potenziamento delle opere marittime esistenti per la messa in sicurezza e prolungamento diga foranea del porto di Castellammare del Golfo (TP)

Relazione di calcolo muro paraonde

$$tg\phi_i tg\alpha_i$$
 $m = (1 + ----) \cos\alpha_i$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima}, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare finquando il valore calcolato coincide con il valore assunto.

7. CALCOLI IDRAULICI

Il proporzionamento idraulico del muro è condizionato da:

- Run-up
- Overtopping

Il parametro che influenza il comportamento idraulico della struttura e che, di conseguenza, ne regola il proporzionamento è il numero di Irribarren:

$$\xi = \frac{\tan \alpha}{\sqrt{S}}$$

In cui α è l'angolo della mantellata con l'orizzontale ed S è la ripidità dell'onda su profondità infinita:

$$S = \frac{2\pi H_S}{gT^2}$$

Valutata sulla base del periodo di picco T.

Il numero di Irribarren risulta pari a **4.6708**, avendo considerato i dati estratti dalla relazione meteomarina dove Hs = 7.5m e T=13.6 sec.

7.1.1. Determinazione della quota di run-up

Sia R_U il massimo livello dell'onda rispetto al livello di quiete, reso dimensionale con l'altezza significativa H_S . Indichiamo con $R_{U(2\%)}$ la media del 2% dei massimi valori di R_U .

Van Der Meer (1993) ha proosto le seguenti espressioni:

$$\frac{R_{U(2\%)}}{H_S} = 1.5 \cdot r_f \cdot \xi \qquad se \ \xi < 2$$

$$\frac{R_{U(2\%)}}{H_S} = 3 \cdot r_f \qquad se \; \xi > 2$$

In cui r_f è un fattore che tiene conto dell'attrito offerto dalla mantellata, dell'angolo d'attacco e della tridimensionalità delle onde.

Nel caso in esame per la mantellata in accropodi si fissa $r_f = 0.406$, ed essendo il numero di Irribarren superiore a 2 si utilizza la seconda formula di can Der Meer.

Si ottiene pertanto una quota di Ru(2%) pari a 9.15 m.

7.1.2. Determinazione della portata di overtopping

La portata di overtopping (tracimazione) può essere calcolata sulla base della seguente espressione:

$$Q = 8 \cdot 10^{-5} \cdot \sqrt{gH_S^3} \cdot e^{\left(3.1\left(\frac{R_{U(2\%)-R_C}}{H_S}\right)\right)}$$

Considerando la quota di coronamento R_C pari a 8.3 m si ricava una portata pari a:

$$Q = 7.3 \text{ l/s m}$$

Tale valore risulta nella norma.

8. ANALISI DEI CARICHI

Condizioni di carico

Le azioni di progetto, in accordo con quanto previsto dalle NTC 2018, vengono di seguito delineate.

8.1.1. Peso proprio della struttura (G1)

Il peso proprio della struttura è stato computato in automatico dal codice di calcolo utilizzato.

8.1.2. *Moto ondoso (Q1)*

Come anticipato nel capitolo precedente si sono considerati i dati estratti dalla relazione meteomarina dove l'altezza d'onda significativa risulta avere i seguenti dati:

- Hs = 7.5 m
- T=13.6 sec.

Tali dati sono stati utilizzati per il calcolo delle spinte. Inoltre, un'analisi dettagliata delle sollecitazioni del moto ondoso sul massiccio di coronamento, quando la berma della mantellata ha una posizione intermedia tra il livello medio del mare e la quota del muro paraonde, è stata recentemente fornita da Martin et al. (1999). L'onda che investe il massiccio è quasi sempre fratta sul paramento della mantellata. In questo caso, secondo i suddetti autori, la sollecitazione del moto ondoso è in parte dinamica ed in parte statica. Con riferimento ai simboli della Fig.4, la pressione dinamica massima è data dalla relazione:

$$p_d = \alpha \rho g S_0,$$

ove α è un coefficiente adimensionale che assume la forma:

$$\alpha = 2C_r \left(\frac{Ru}{H}\cos\beta\right)^2,$$

essendo C_r un coefficiente dipendente dalla durata dell'impatto dell'onda sul muro paraonde.

Gli autori consigliano di assumere $C_r = 1.45$ per strutture di modesta entità e/o fondazione rigida e $C_r = 1.0$ per grandi strutture e/o fondazioni elastiche. S_0 si calcola con la seguente relazione:

$$S_0 = H_C \left(1 - \frac{A_C}{Ru} \right),$$

ove con H_C si intende la quota della cresta dell'onda rispetto al livello medio (H_C =0.78÷1H). La pressione dinamica minima è data dalla relazione:

$$p'_d = \lambda p_d$$
,

con $\lambda = 0.8 \exp(-10.9 \, B/L)$, essendo L la lunghezza dell'onda di progetto al piede della mantellata.

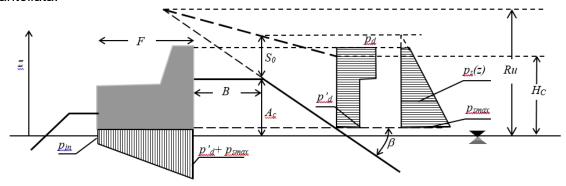


Figura 4 – Schema di calcolo delle sollecitazioni del moto ondoso sul massiccio di coronamento

La pressione idrostatica è data dalla seguente relazione:

$$p_s(z) = \mu \rho g(S_0 + A_c - z),$$

essendo μ un coefficiente adimensionale dipendente dal numero degli elementi lapidei che occupano la larghezza della berma:

$$\mu = a \exp[c(H/L - b)^2].$$

I valori di a, b e c sono riportati nella Tab. I.

Tabella I – Valori dei coefficienti a, b e c in funzione della larghezza relativa della berma

B/D _N	а	b	С
1	0.446	0.068	259.0
2	0.362	0.069	357.1
3	0.296	0.073	383.1

La pressione trasmessa attraverso l'intradosso del massiccio dipende dalla permeabilità della gettata a contatto con esso. Tale pressione è una quota parte di quella idrostatica. Si ritiene che la componente dinamica si esaurisca prima di raggiungere il paramento di valle del massiccio. Nella Fig. 5 sono riportati i valori osservati delle pressioni all'intradosso in funzione della larghezza del massiccio.

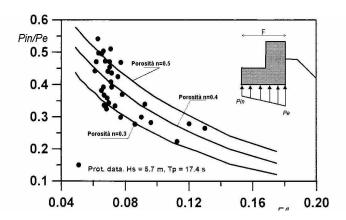


Figura 5 – Pressioni nell'intradosso del massiccio in funzione della sua larghezza relativa

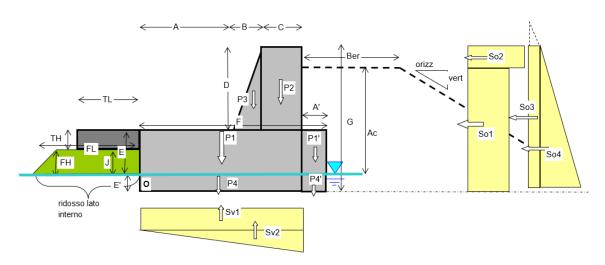


Figura 6 – Schema nomenclatura elementi

Tabella II - Dimensioni geometriche

Dimensioni Massiccio						
Α	2.00					
A'	2.00					
В	1.40					
С	1.50					
D	5.50					

E+E'	2.10
E	1.80
E'	0.30
F	6.90
G	7.60
J	0.70
Ber	9.00
Ac	6.80

Tabella III - Spinte ottenute

So1	3.66	t/m
So2	0.65	t/m
So3	0.98	t/m
So4	10.76	t/m
Sv1	11.73	t/m
Sv2	5.69	t/m

8.1.3. Azioni sismiche (E)

Si è condotta un'analisi modale al fine di considerare correttamente gli effetti dovuti al carico sismico.

Combinazioni di carico

L'analisi e le verifiche strutturali sono state sviluppate tramite il metodo degli Stati Limite considerando le combinazioni delle azioni elementari definite nel §2.5.3 del NTC/08 e di seguito riportate:

- <u>Combinazione fondamentale</u>, generalmente impiegata per gli stati limite ultimi (SLU):
 γG1·G1 + γG2·G2 + γP·P + γQ1·Qk1 + γQ2·Ψ02·Qk2 + γQ3·Ψ03·Qk3 + ...
- <u>Combinazione caratteristica (rara)</u>, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili:
 G1 + G2 + P + Qk1 + ψ02·Qk2 + ψ03·Qk3+ ...
- <u>Combinazione frequente</u>, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a

Progetto Definitivo Potenziamento delle opere marittime esistenti per la messa in sicurezza e prolungamento diga foranea del porto di Castellammare del Golfo (TP)

Relazione di calcolo muro paraonde

lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• <u>Combinazione sismica</u>, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

• <u>Combinazione eccezionale</u>, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto Ad:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

9. DATI

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

- n° numero ordine del punto
- X ascissa del punto espressa in [m]
- Y ordinata del punto espressa in [m]
- A inclinazione del tratto espressa in [°]

n°	X	Y	Α		
	[m]	[m]	[°]		
1	0.00	0.00	0.000		
2	15.00	0.00	0.000		

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000[°]

Geometria muro

Goomotria maro		
Geometria paramento e fondazione Paramento Materiale Altezza paramento Altezza paramento libero Spessore in sommità Spessore all'attacco con la fondazione Inclinazione paramento esterno Inclinazione paramento interno	Cls Armato 5.50 5.50 1.50 2.90 14.30 0.00	[m] [m] [m] [°]
Fondazione Materiale Lunghezza mensola di valle Lunghezza mensola di monte Lunghezza totale Inclinazione piano di posa Spessore Spessore magrone	Cls Armato 2.00 2.00 6.90 0.00 2.10 0.15	[m] [m] [°] [m] [m]
Sperone Posizione Distanza dal tacco della fondazione Altezza Spessore	Monte 0.00 1.00 2.00	[m] [m]

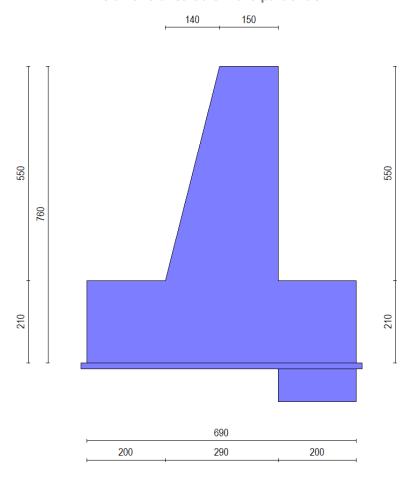


Figura 7 – Sezione quotata del muri

Descrizione terreni

9.1.1. Parametri di resistenza

Simbolo	ogia adottata
n°	Indice del terreno
Descr	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γ_{s}	Peso di volume saturo del terreno espresso in [kN/mc]
ф	Angolo d'attrito interno espresso in [°]
δ	Angolo d'attrito terra-muro espresso in [°]
С	Coesione espressa in [kPa]
Ca	Adesione terra-muro espressa in [kPa]

Per calcolo portanza con il metodo di Bustamante-Doix

Cesp Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

τl Tensione tangenziale limite, espressa in [kPa]

n°	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ
		[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]		[kPa]
1	Terreno	18.6300	18.6300	32.000	21.330	0	0		
2	acro	13.0000	13.0000	80.000	53.330	500	250		

9.1.2. Stratigrafia

Simbologia adottata

n° Indice dello strato

H Spessore dello strato espresso in [m]

α Inclinazione espressa in [°]

Terreno dello strato

Kwn, Kwt Costante di Winkler normale e tangenziale alla superficie espressa in

Kg/cm²/cm

Per calcolo pali (solo se presenti)

Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Ks Coefficiente di spinta

Cesp Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di

Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato')

Kst_{sta}, Kst_{sis}Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kwn	Kwt	Kw	Ks	Cesp	Kst _{sta}	Kst _{sis}
	[m]	[°]		[Kg/cm³]	[Kg/cm³]	[Kg/cm³]				
1	3.50	0.000	acro	0.000	0.000	0.000	0.000	1.000	0.000	0.000
2	4.80	0.000	Terreno	8.000	0.000	0.000	0.000	1.000	0.000	0.000
3	3.00	0.000	Terreno	0.000	0.000	0.000	0.000	1.000	0.000	0.000

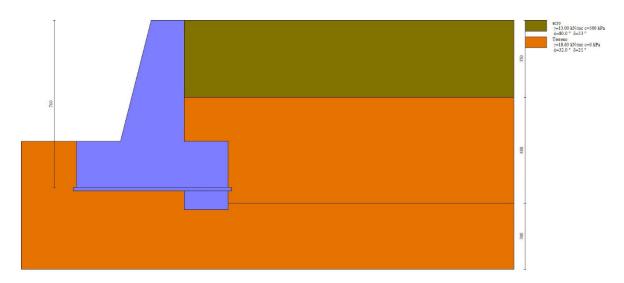


Figura 8 – Stratigrafia

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

- X Ascissa del punto di applicazione del carico concentrato espressa in [m]
- F_x Componente orizzontale del carico concentrato espressa in [kN]
- F_y Componente verticale del carico concentrato espressa in [kN]
- M Momento espresso in [kNm]
- X_i Ascissa del punto iniziale del carico ripartito espressa in [m]
- X_f Ascissa del punto finale del carico ripartito espressa in [m]
- Q_i Intensità del carico per x=X_i espressa in [kN]
- Q_f Intensità del carico per x=X_f espressa in [kN]

Condizione n° 1 (Condizione 1) – VARIABILE

I carichi inseriti sono le risultanti delle azioni riportate nella tabella III del paragrafo 8.1.2.

Coeff. di combinazione Ψ_0 =0.60 - Ψ_1 =0.20 - Ψ_2 =0.00

Carichi sul muro

n°	Tipo	Dest	X; Y	Fx	Fy	M	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0.00; -4.05	35.9300	0.0000	0.0000				
2	Concentrato	Paramento	0.00; -0.25	6.3400	0.0000	0.0000				
3	Concentrato	Paramento	0.00; -3.80	9.6400	0.0000	0.0000				
4	Concentrato	Paramento	0.00; -5.07	105.5900	0.0000	0.0000				
5	Concentrato	Fondazione	-2.45; -7.60	0.0000	-81.6900	0.0000				
6	Concentrato	Fondazione	-1.63; -7.60	0.0000	-39.6300	0.0000				
7	Concentrato	Fondazione	1.00; -7.60	0.0000	-37.5300	0.0000				
8	Concentrato	Fondazione	0.67; -7.60	0.0000	-17.5700	0.0000				

Opzioni di calcolo

<u>Spinta</u>

Metodo di calcolo della spinta Culmann Tipo di spinta Spinta Spinta attiva

Terreno a bassa permeabilità NO Superficie di spinta limitata NO

Capacità portante

Metodo di calcolo della portanzaMeyerhofCriterio di media calcolo del terreno equivalente (terreni stratificati)PonderataCriterio di riduzione per eccentricità della portanzaMeyerhofCriterio di riduzione per rottura locale (punzonamento)NessunaLarghezza fondazione nel terzo termine della formula del carico limite (0.5BγNγ)

Larghezza ridotta (B')

Fattori di forma e inclinazione del carico Solo i fattori di inclinazione Se la fondazione ha larghezza superiore a 2.0 m viene applicato il fattore di riduzione per comportamento a piastra

Stabilità globale

Metodo di calcolo della stabilità globale Bishop

Altro

Partecipazione spinta passiva terreno antistante 50.00
Partecipazione resistenza passiva dente di fondazione 75.00
Componente verticale della spinta nel calcolo delle sollecitazioni NO
Considera terreno sulla fondazione di valle NO
Considera spinta e peso acqua fondazione di valle NO

Spostamenti

Non è stato richiesto il calcolo degli spostamenti

Cedimenti

Non è stato richiesto il calcolo dei cedimenti

Specifiche per le verifiche nelle combinazioni allo Stato Limite Ultimo (SLU)

	SLU	Eccezionale
Coefficiente di sicurezza calcestruzzo a compressione	1.50	1.00
Coefficiente di sicurezza acciaio	1.15	1.00
Fattore di riduzione da resistenza cubica a cilindrica	0.83	0.83
Fattore di riduzione per carichi di lungo periodo	0.85	0.85
Coefficiente di sicurezza per la sezione	1.00	1.00

Specifiche per le verifiche nelle combinazioni allo Stato Limite di Esercizio (SLE)

Paramento e fondazione muro

Verifiche strutturali nelle combinazioni SLD eseguite. Struttura in classe d'uso III o IV

Condizioni ambientali Monto aggressive

Armatura ad aderenza migliorata SI

Verifica a fessurazione

Sensibilità armatura Poco sensibile

Metodo di calcolo aperture delle fessure NTC 2018 - CIRCOLARE 21 gennaio 2019, n. 7 C.S.LL.PP.

Valori limite aperture delle fessure:

 $w_1 = 0.20$

Progetto Definitivo Potenziamento delle opere marittime esistenti per la messa in sicurezza e prolungamento diga foranea del porto di Castellammare del Golfo (TP)

Relazione di calcolo muro paraonde

 $w_2 = 0.30$

 $w_3 = 0.40$

Verifica delle tensioni

Valori limite delle tensioni nei materiali:

Combinazione	Calcestruzzo	Acciaio		
Rara	0.60 f _{ck}	0.80 f _{yk}		
Frequente	1.00 f _{ck}	1.00 f _{yk}		
Quasi permanente	0.45 f _{ck}	1.00 f _{yk}		

10. RISULTATI PER INVILUPPO

Spinta e forze

Simbologia adottata

Ic Indice della combinazione

A Tipo azione

I Inclinazione della spinta, espressa in [°]

V Valore dell'azione, espressa in [kN]

 C_X , C_Y Componente in direzione X ed Y dell'azione, espressa in [kN]

P_X, P_Y Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	Cx	CY	Px	PY
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	169.43	21.33	157.82	61.63	2.00	-6.49
	Peso/Inerzia muro			0.00	701.17/0.00	-1.15	-5.17
	Peso/Inerzia terrapieno			0.00	82.87/0.00	1.00	-2.75
	Resistenza passiva terreno antistante			-66.85			
	Resistenza passiva sperone			-226.87			
	Risultante forze sul muro			236.25	-264.63		
2	Spinta statica	130.33	21.33	121.40	47.41	2.00	-6.49
	Incremento di spinta sismica		40.30	37.54	14.66	2.00	-5.73
	Peso/Inerzia muro			74.93	701.17/37.47	-1.15	-5.17
	Peso/Inerzia terrapieno			17.69	165.52/8.84	1.00	-2.75
	Resistenza passiva terreno antistante			-66.85			
	Resistenza passiva sperone			-475.45			

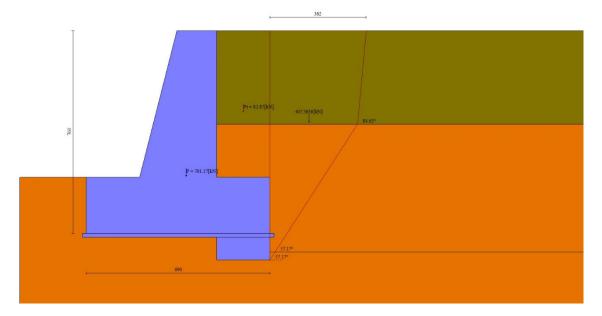


Figura 9 – Cuneo di spinta (combinazione statica) (Combinazione n. 1)

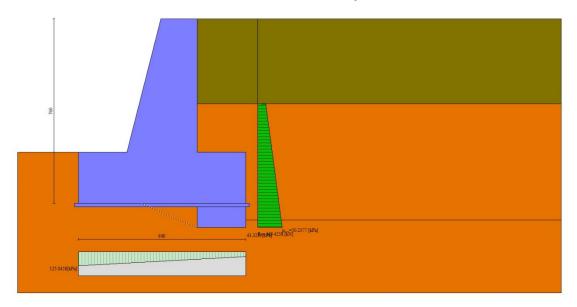


Figura 10 – Diagramma delle pressioni (combinazione statica) (Combinazione n. 1)

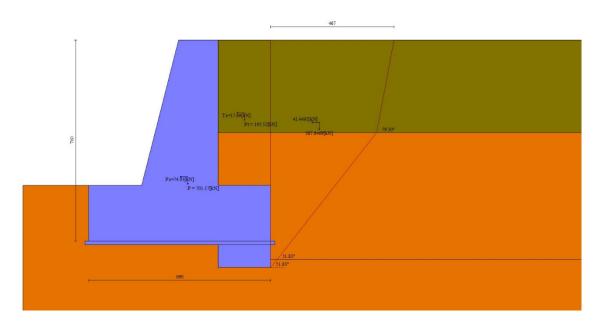


Figura 11 – Cuneo di spinta (combinazione sismica) (Combinazione n. 2)

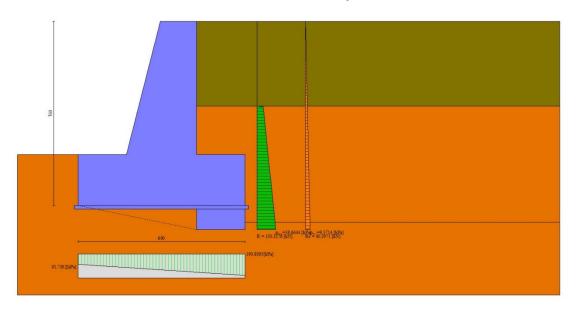


Figura 12 – Diagramma delle pressioni (combinazione sismica) (Combinazione n. 2)

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Cmb Indice/Tipo combinazione

S Sisma (H: componente orizzontale, V: componente verticale)

FS_{SCO} Coeff. di sicurezza allo scorrimento
FS_{RIB} Coeff. di sicurezza al ribaltamento
FS_{QLIM} Coeff. di sicurezza a carico limite
FS_{STAB} Coeff. di sicurezza a stabilità globale
FS_{HYD} Coeff. di sicurezza a sifonamento
FS_{UPL} Coeff. di sicurezza a sollevamento

Cmb	Sismica	FS _{sco}	FS _{RIB}	FS _{QLIM}	FS STAB	FS _{HYD}	FSUPL
1 - STR (A1-M1-R3)		1.134		3.181			
2 - STR (A1-M1-R3)	H + V	2.705		5.699			
3 - STR (A1-M1-R3)	H - V	2.609		6.108			
4 - GEO (A2-M2-R2)					3.061		
5 - GEO (A2-M2-R2)	H + V				2.857		
6 - GEO (A2-M2-R2)	H - V				2.812		
7 - EQU (A1-M1-R3)			1.900				
8 - EQU (A1-M1-R3)	H + V		6.779				
9 - EQU (A1-M1-R3)	H - V		4.483				

diga foranea del porto di Castellammare del Golfo (TP) Relazione di calcolo muro paraonde

Simbologia adottata

n° Indice combinazione

Rsa Resistenza allo scorrimento per attrito, espresso in [kN] Rpt Resistenza passiva terreno antistante, espresso in [kN]

Rps Resistenza passiva sperone, espresso in [kN]

Rp Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN]

Rt Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN]

T Carico parallelo al piano di posa, espresso in [kN]

FS Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
1 - STR (A1-M1-R3)	153.32	66.85	226.87			447.04	394.07	1.134
3 - STR (A1-M1-R3) H - V	122.95	66.85	433.72			623.52	239.03	2.609

Dettagli verifica a scorrimento

Simbologia adottata

n° Indice combinazione

Ncss Carico sul cuneo di spinta passiva, espresso in [kN]

φ_{Rp} Angolo di rottura passivo, espresso in [°]

Nrpp Carico residuo sul piano di posa, espresso in [kN]

Lr Lunghezza base residua, espresso in [m]

n°	Ncss	фпр	Nrpp	Lr
	[kN]		[kN]	[m]
1	188.41	23.214	392.63	4.57
3	562.68	11.554	314.87	2.01

10.1.2. Verifica a carico limite

Simbologia adottata

n° Indice combinazione

N Carico normale totale al piano di posa, espresso in [kN]

Qu carico limite del terreno, espresso in [kN]
Qd Portanza di progetto, espresso in [kN]

FS Fattore di sicurezza (rapporto tra portanza di progetto e carico agente al piano di

posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
1 - STR (A1-M1-R3)	581.04	1848.19	1320.13	3.181
2 - STR (A1-M1-R3) H + V	975.07	5557.03	4630.85	5.699

Dettagli calcolo portanza

diga foranea del porto di Castellammare del Golfo (TP)

Relazione di calcolo muro paraonde

Simbo	loaia.	adottata
CILLIDO	logia	additata

n° Indice combinazione Nc, Nq, Nγ Fattori di capacità portante Fattori di inclinazione del carico ic, iq, iγ dc, dq, dγ Fattori di profondità del piano di posa Fattori di inclinazione del profilo topografico gc, gq, gy Fattori di inclinazione del piano di posa bc, bq, bγ Fattori di forma della fondazione sc, sq, sγ Fattori di riduzione per punzonamento secondo Vesic pc, pq, pγ Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno rγ larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN_y viene moltiplicato per questo fattore D Affondamento del piano di posa, espresso in [m] B' Larghezza fondazione ridotta, espresso in [m] Η Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kN/mc] γ Angolo di attrito del terreno medio, espresso in [°] φ Coesione del terreno medio, espresso in [kPa] С

Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Nγ	ic iq iγ	dc dq dγ	gq	bc bq bγ	sq	pq	r γ	D	B' H	γ	ф	С
									[m]	[m]	[kN/mc]	[°]	[kPa]
1	35.490	0.385	1.110					0.866	2.10	6.90	18.63	32.00	0
	23.177	0.385	1.055							6.23			
	22.022	0.004	1.055										
2	35.490	0.704	1.110					0.866	2.10	6.90	18.63	32.00	0
	23.177	0.704	1.055							6.23			
	22.022	0.300	1.055										

10.1.3. Verifica a ribaltamento

Simbologia adottata

n° Indice combinazione

Ms Momento stabilizzante, espresso in [kNm] Mr Momento ribaltante, espresso in [kNm]

FS Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

n°	Ms	Mr	FS
	[kNm]	[kNm]	
7 - EQU (A1-M1-R3)	3547.31	1866.58	1.900
9 - EQU (A1-M1-R3) H - V	4048.41	903.07	4.483

10.1.4. Verifica stabilità globale muro + terreno

Simbologia adottata

Ic Indice/Tipo combinazione

C Centro superficie di scorrimento, espresso in [m]

R Raggio, espresso in [m] FS Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
4 - GEO (A2-M2-R2)	-1.50; 1.00	10.23	3.061
6 - GEO (A2-M2-R2) H - V	-4.00; 2.50	12.63	2.812

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN]

Qy carico sulla striscia espresso in [kN]

α angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

angolo d'attrito del terreno lungo la base della striscia

c coesione del terreno lungo la base della striscia espressa in [kPa]

b larghezza della striscia espressa in [m]

u pressione neutra lungo la base della striscia espressa in [kPa]

Tx; Ty Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa]

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	13.54	0.00	8.69 - 0.72	75.884	77.570	400	0.0	
2	34.77	0.00	0.72	63.213	26.560	0	0.0	
3	50.90	0.00	0.72	55.159	26.560	0	0.0	
4	63.44	0.00	0.72	48.544	26.560	0	0.0	
5	73.47	0.00	0.72	42.719	26.560	0	0.0	
6	81.71	0.00	0.72	37.406	26.560	0	0.0	
7	88.54	0.00	0.72	32.449	26.560	0	0.0	
8	94.21	0.00	0.72	27.754	26.560	0	0.0	
9	98.88	0.00	0.72	23.256	26.560	0	0.0	
10	112.69	0.00	0.72	18.905	26.560	0	0.0	
11	118.81	-48.79	0.72	14.665	26.560	0	0.0	
12	120.99	-22.84	0.72	10.506	26.560	0	0.0	
13	155.79	0.00	0.72	6.403	26.560	0	0.0	
14	156.63	0.00	0.72	2.333	26.560	0	0.0	
15	135.12	-51.52	0.72	-1.725	26.560	0	0.0	
16	84.22	-106.20	0.72	-5.792	26.560	0	0.0	

n°	W	Qу	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
17	57.09	0.00	0.72	-9.889	26.560	0	0.0	
18	55.02	0.00	0.72	-14.037	26.560	0	0.0	
19	50.17	0.00	0.72	-18.263	26.560	0	0.0	
20	39.59	0.00	0.72	-22.595	26.560	0	0.0	
21	35.07	0.00	0.72	-27.069	26.560	0	0.0	
22	29.56	0.00	0.72	-31.731	26.560	0	0.0	
23	22.91	0.00	0.72	-36.643	26.560	0	0.0	
24	14.90	0.00	0.72	-41.895	26.560	0	0.0	
25	5.17	0.00	-9.41 - 0.72	-47.144	26.560	0	0.0	

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	15.65	0.00	8.39 - 0.89	71.907	80.000	500	0.0	
2	41.76	0.00	0.89	61.404	32.000	0	0.0	
3	64.25	0.00	0.89	53.789	32.000	0	0.0	
4	82.23	0.00	0.89	47.408	32.000	0	0.0	
5	96.73	0.00	0.89	41.737	32.000	0	0.0	
6	108.70	0.00	0.89	36.535	32.000	0	0.0	
7	118.64	0.00	0.89	31.666	32.000	0	0.0	
8	139.80	0.00	0.89	27.042	32.000	0	0.0	
9	149.87	0.00	0.89	22.602	32.000	0	0.0	
10	177.54	0.00	0.89	18.303	32.000	0	0.0	
11	200.58	0.00	0.89	14.109	32.000	0	0.0	
12	176.36	0.00	0.89	9.990	32.000	0	0.0	
13	106.36	0.00	0.89	5.924	32.000	0	0.0	
14	87.18	0.00	0.89	1.888	32.000	0	0.0	
15	86.99	0.00	0.89	-2.140	32.000	0	0.0	
16	75.12	0.00	0.89	-6.177	32.000	0	0.0	
17	73.00	0.00	0.89	-10.246	32.000	0	0.0	
18	69.80	0.00	0.89	-14.369	32.000	0	0.0	
19	65.46	0.00	0.89	-18.569	32.000	0	0.0	
20	59.91	0.00	0.89	-22.876	32.000	0	0.0	
21	53.03	0.00	0.89	-27.325	32.000	0	0.0	
22	44.68	0.00	0.89	-31.962	32.000	0	0.0	
23	34.62	0.00	0.89	-36.849	32.000	0	0.0	
24	22.51	0.00	0.89	-42.076	32.000	0	0.0	
25	7.82	0.00	-13.78 - 0.89	-47.338	32.000	0	0.0	

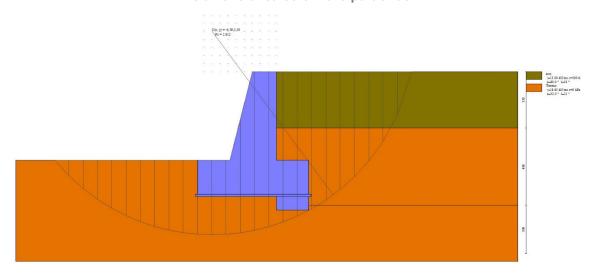


Figura 13 – Stabilità fronte scavo – Cerchio critico (Combinazione n. 6)

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

N Sforzo normale, espresso in [kN]. Positivo se di compressione.

T Taglio, espresso in [kN]. Positivo se diretto da monte verso valle

M Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.08	3.09	3.09	0.00	0.33	-0.02	0.00
3	-0.17	6.22	6.22	0.00	0.67	-0.07	-0.01
4	-0.25	9.39	9.39	0.00	1.02	-0.15	-0.02
5	-0.25	9.39	9.39	0.00	9.51	-0.15	-0.02
6	-0.35	13.20	13.20	0.00	9.51	-0.29	0.65
7	-0.45	17.07	17.07	0.00	9.51	-0.48	1.39
8	-0.55	21.00	21.00	0.00	9.51	-0.72	2.09
9	-0.64	25.00	25.00	0.00	9.51	-1.01	2.74
10	-0.74	29.05	29.05	0.00	9.51	-1.35	3.34
11	-0.84	33.17	33.17	0.00	9.51	-1.74	3.89
12	-0.94	37.34	37.34	0.00	9.51	-2.18	4.38
13	-1.04	41.58	41.58	0.00	9.51	-2.68	4.82
14	-1.14	45.88	45.88	0.00	9.51	-3.23	5.21
15	-1.24	50.23	50.23	0.00	9.51	-3.83	5.55
16	-1.33	54.65	54.65	0.00	9.51	-4.49	5.83
17	-1.43	59.13	59.13	0.00	9.51	-5.21	6.05

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
18	-1.53	63.67	63.67	0.00	9.51	-5.98	6.21
19	-1.63	68.27	68.27	0.00	9.51	-6.81	6.32
20	-1.73	72.93	72.93	0.00	9.51	-7.69	6.37
21	-1.83	77.66	77.66	0.00	9.51	-8.64	6.37
22	-1.93	82.44	82.44	0.00	9.61	-9.65	6.30
23	-2.02	87.28	87.28	0.00	10.21	-10.71	6.17
24	-2.12	92.19	92.19	0.00	10.82	-11.84	5.98
25	-2.22	97.15	97.15	0.00	11.44	-13.03	5.73
26	-2.32	102.18	102.18	0.00	12.08	-14.28	5.41
27	-2.42	107.27	107.27	0.00	12.72	-15.60	5.03
28	-2.52	112.42	112.42	0.00	13.37	-16.98	4.59
29	-2.62	117.62	117.62	0.00	14.04	-18.42	4.08
30	-2.72	122.89	122.89	0.00	14.72	-19.94	3.51
31	-2.81	128.22	128.22	0.00	15.40	-21.51	2.87
32	-2.91	133.61	133.61	0.00	16.10	-23.16	2.16
33	-3.01	139.07	139.07	0.00	16.81	-24.87	1.39
34	-3.11	144.58	144.58	0.00	17.53	-26.65	0.54
35	-3.21	150.15	150.15	0.00	18.26	-28.51	-0.37
36	-3.31	155.79	155.79	0.00	19.00	-30.43	-1.36
37	-3.41	161.48	161.48	0.00	19.75	-32.42	-2.41
38	-3.50	167.24	167.24	0.00	20.51	-34.49	-2.49
39	-3.60	173.05	173.05	1.11	22.09	-36.57	-2.53
40	-3.70	178.93	178.93	2.33	23.83	-38.62	-2.48
41	-3.80	184.87	184.87	3.60	25.65	-40.61	-2.32
42	-3.80	184.87	184.87	3.60	28.64	-40.61	-2.32
43	-3.88	189.93	189.93	4.70	30.08	-42.26	-2.09
44	-3.97	195.04	195.04	5.84	31.57	-43.86	-1.78
45	-4.05	200.19	200.19	7.02	33.09	-45.43	-1.37
46	-4.05	200.19	200.19	7.02	86.99	-45.43	-1.37
47	-4.14	205.98	205.98	8.36	88.73	-47.11	0.62
48	-4.24	211.81	211.81	9.75	90.54	-48.74	6.47
49	-4.33	217.71	217.71	11.17	92.39	-50.31	12.41
50	-4.42	223.65	223.65	12.64	94.30	-51.81	18.46
51	-4.51	229.65	229.65	14.15	96.26	-53.25	24.61
52	-4.61	235.70	235.70	15.70	98.28	-54.62	30.88
53	-4.70	241.81	241.81	17.29	100.34	-55.91	37.27
54	-4.79	247.97	247.97	18.92	102.47	-57.12	43.78
55	-4.88	254.18	254.18	20.60	104.64	-58.26	50.41
56	-4.98	260.45	260.45	22.31	106.87	-59.31	57.18
57	-5.07	266.77	266.77	24.07	109.15	-60.28	64.08
58	-5.07	266.77	266.77	24.07	267.54	-60.28	64.08
59	-5.16	272.68	272.68	25.73	269.70	-61.09	84.22

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
60	-5.24	278.64	278.64	27.43	271.91	-61.83	104.49
61	-5.33	284.64	284.64	29.17	274.17	-62.48	124.88
62	-5.41	290.69	290.69	30.94	276.47	-63.05	145.41
63	-5.50	296.79	296.79	32.74	278.81	-63.53	166.06

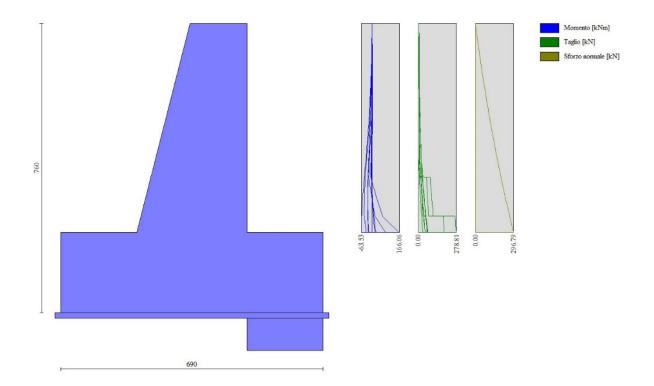


Figura 14 – Paramento

Fondazione

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-4.90	0.00	0.00	0.00	0.00	0.00	0.00
2	-4.80	0.00	0.00	0.06	7.30	0.00	0.37
3	-4.70	0.00	0.00	0.36	14.48	0.02	1.46
4	-4.60	0.00	0.00	0.89	21.54	0.08	3.26
5	-4.50	0.00	0.00	1.66	28.48	0.21	5.76
6	-4.40	0.00	0.00	2.66	35.30	0.42	8.95
7	-4.30	0.00	0.00	3.91	42.00	0.75	12.81
8	-4.20	0.00	0.00	5.38	48.59	1.21	17.35
9	-4.10	0.00	0.00	7.10	55.06	1.83	22.53
10	-4.00	0.00	0.00	9.05	61.41	2.64	28.35
11	-3.90	0.00	0.00	11.24	67.64	3.65	34.81

n°	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
12	-3.80	0.00	0.00	13.66	73.75	4.89	41.88
13	-3.70	0.00	0.00	16.32	79.75	6.39	49.55
14	-3.60	0.00	0.00	19.21	85.62	8.16	57.82
15	-3.50	0.00	0.00	22.35	91.38	10.24	66.67
16	-3.40	0.00	0.00	25.71	97.02	12.64	76.09
17	-3.30	0.00	0.00	29.32	102.54	15.39	86.07
18	-3.20	0.00	0.00	33.16	107.94	18.51	96.60
19	-3.10	0.00	0.00	37.24	113.23	22.03	107.66
20	-3.00	0.00	0.00	41.55	118.39	25.97	119.24
21	-2.90	0.00	0.00	46.10	123.44	30.35	131.33
22	0.00	0.00	0.00	-174.20	63.17	-190.79	78.92
23	0.10	0.00	0.00	-162.99	62.30	-174.66	72.91
24	0.19	0.00	0.00	-151.67	61.21	-159.60	67.00
25	0.29	0.00	0.00	-140.24	59.91	-145.63	61.20
26	0.38	0.00	0.00	-128.70	58.39	-132.75	55.54
27	0.48	0.00	0.00	-117.05	56.65	-120.99	50.03
28	0.57	0.00	0.00	-105.30	54.70	-110.35	44.70
29	0.67	0.00	0.00	-93.43	52.53	-100.84	39.57
30	0.67	0.00	0.00	-119.79	52.53	-100.84	39.57
31	0.75	0.00	0.00	-109.47	50.49	-91.38	35.32
32	0.83	0.00	0.00	-99.08	48.29	-82.78	31.24
33	0.92	0.00	0.00	-88.61	45.92	-75.04	27.35
34	1.00	0.00	0.00	-78.05	43.40	-68.16	23.67
35	1.00	0.00	0.00	-134.35	43.40	-68.16	23.67
36	1.10	0.00	0.00	-121.44	40.12	-55.37	19.49
37	1.20	0.00	0.00	-108.42	36.61	-43.88	15.65
38	1.30	0.00	0.00	-95.29	32.86	-33.69	12.18
39	1.40	0.00	0.00	-82.03	28.87	-24.82	9.09
40	1.50	0.00	0.00	-68.65	24.65	-17.29	6.41
41	1.60	0.00	0.00	-55.16	20.19	-11.10	4.16
42	1.70	0.00	0.00	-41.55	15.50	-6.26	2.38
43	1.80	0.00	0.00	-27.82	10.57	-2.79	1.07
44	1.90	0.00	0.00	-13.97	5.40	-0.70	0.27
45	2.00	0.00	0.00	0.00	0.00	0.00	0.00

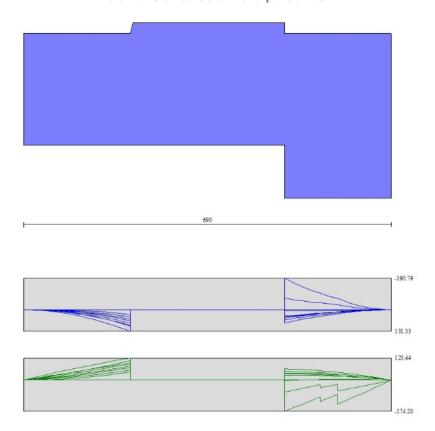


Figura 15 - Fondazione

Verifiche strutturali

10.1.5. Verifiche a flessione

Elementi calcolati a trave

Simbolo	ogia adottata
n°	indice sezione
Υ	ordinata sezione espressa in [m]
В	larghezza sezione espresso in [cm]
Н	altezza sezione espressa in [cm]
Afi	area ferri inferiori espresso in [cmq]
Afs	area ferri superiori espressa in [cmq]
M	momento agente espressa in [kNm]
N	sforzo normale agente espressa in [kN]
Mu	momento ultimi espresso in [kNm]

Nu sforzo normale ultimo espressa in [kN]

FS fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	150	2.01	0.79	0.00	0.00	0.00	0.00	1000.000
2	100	152	2.01	0.79	0.00	0.00	0.00	0.00	1000.000
3	100	154	2.01	0.79	0.00	0.00	0.00	0.00	1000.000
4	100	156	2.01	0.79	0.00	0.00	0.00	0.00	1000.000
5	100	156	2.01	0.79	0.00	0.00	0.00	0.00	1000.000
6	100	159	0.00	0.79	0.00	0.00	0.00	0.00	1000.000
7	100	161	0.00	0.79	1.39	17.07	1219.14	14919.74	873.941
8	100	164	0.00	0.79	-0.10	21.00	-75.44	15151.61	721.359
9	100	166	0.00	0.79	2.74	25.00	1687.66	15383.49	615.402
10	100	169	0.00	0.79	3.34	29.05	1795.59	15615.36	537.507
11	100	171	0.00	0.79	-0.24	33.17	-113.80	15847.24	477.812
12	100	174	0.00	0.79	4.38	37.34	1886.97	16079.11	430.593
13	100	176	0.00	0.79	4.82	41.58	1892.52	16310.99	392.298
14	100	179	0.00	0.79	5.21	45.88	1879.66	16542.86	360.606
15	100	182	0.00	0.79	-0.48	50.23	-161.47	16774.74	333.938
16	100	184	0.00	0.79	5.83	54.65	1812.69	17006.61	311.182
17	100	187	0.00	0.79	6.05	59.13	1763.19	17238.49	291.530
18	100	189	0.00	0.79	6.21	63.67	1705.08	17470.36	274.384
19	100	192	0.00	0.79	6.32	68.27	1639.47	17702.24	259.290
20	100	194	0.00	0.79	6.37	72.93	1567.21	17934.11	245.896
21	100	197	0.00	0.79	-1.10	77.66	-258.27	18165.98	233.928
22	100	199	0.00	0.79	6.30	82.44	1405.26	18397.86	223.168
23	100	202	0.00	0.79	6.17	87.28	1316.54	18629.73	213.439
24	100	204	0.00	0.79	-1.23	92.19	-250.98	18861.61	204.599
25	100	207	0.00	0.79	5.73	97.15	1125.38	19093.48	196.528
26	100	209	0.00	0.79	5.41	102.18	1023.49	19325.36	189.130
27	100	212	0.00	0.79	5.03	107.27	917.68	19557.23	182.323
28	100	214	0.00	0.79	-1.60	112.42	-281.55	19789.11	176.036
29	100	217	0.00	0.79	4.08	117.62	694.97	20020.98	170.212
30	100	219	0.00	0.79	3.51	122.89	578.36	20252.86	164.801
31	100	222	0.00	0.79	-2.41	128.22	-385.36	20484.73	159.758
32	100	224	0.00	0.79	2.16	133.61	335.18	20716.61	155.048
33	100	227	0.00	0.79	1.39	139.07	208.81	20948.48	150.637
34	100	229	0.00	0.79	0.54	144.58	79.35	21180.36	146.498
35	100	232	2.01	0.00	-0.37	150.15	-53.25	21460.18	142.924
36	100	234	2.01	0.00	-1.36	155.79	-188.98	21692.05	139.243
37	100	237	2.01	0.00	-2.41	161.48	-327.61	21923.93	135.768
38	100	239	2.01	0.00	-2.49	167.24	-330.00	22155.80	132.482
39	100	242	2.01	0.00	-3.65	173.05	-472.12	22387.67	129.370
40	100	244	2.01	0.00	-5.73	178.93	-724.24	22619.55	126.416

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
41	100	247	2.01	0.00	-2.32	184.87	-286.38	22851.42	123.610
42	100	247	2.01	0.00	-2.32	184.87	-286.38	22851.42	123.610
43	100	249	2.01	0.00	-6.24	189.93	-757.40	23047.38	121.345
44	100	251	2.01	0.00	-1.78	195.04	-211.93	23243.33	119.172
45	100	253	2.01	0.00	-1.37	200.19	-160.61	23439.28	117.083
46	100	253	2.01	0.00	-1.37	200.19	-160.61	23439.28	117.083
47	100	256	0.00	1.57	0.62	205.98	71.62	23640.11	114.771
48	100	258	0.00	1.57	-0.11	211.81	-12.08	23858.14	112.637
49	100	260	0.00	1.57	-1.31	217.71	-145.41	24076.18	110.590
50	100	263	0.00	1.57	18.46	223.65	2004.86	24294.22	108.626
51	100	265	0.00	1.57	0.46	229.65	48.87	24512.26	106.738
52	100	267	0.00	1.57	30.88	235.70	3240.21	24730.30	104.922
53	100	270	0.00	1.57	37.27	241.81	3845.18	24948.34	103.174
54	100	272	0.00	1.57	43.78	247.97	4442.99	25166.38	101.490
55	100	275	0.00	1.57	50.41	254.18	5034.51	25384.42	99.867
56	100	277	0.00	1.57	57.18	260.45	5620.58	25602.46	98.301
57	100	279	0.00	1.57	64.08	266.77	6201.95	25820.50	96.789
58	100	279	0.00	1.57	64.08	266.77	6201.95	25820.50	96.789
59	100	281	0.00	1.57	84.22	272.68	7605.77	24624.97	90.307
60	100	284	0.00	1.57	104.49	278.64	8768.70	23383.28	83.920
61	100	286	0.00	1.57	124.88	284.64	9744.25	22209.72	78.027
62	100	288	0.00	1.57	145.41	290.69	10562.50	21116.05	72.641
63	100	290	0.00	1.57	166.06	296.79	11198.86	20014.34	67.437

Fondazione

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	210	3.93	0.00	0.00	0.00	0.00	0.00	1000.000
2	100	210	3.93	0.00	0.37	0.00	309.58	0.00	846.250
3	100	210	3.93	0.00	1.46	0.00	309.58	0.00	212.710
4	100	210	3.93	0.00	3.26	0.00	309.58	0.00	95.053
5	100	210	3.93	0.00	5.76	0.00	309.58	0.00	53.761
6	100	210	3.93	3.93	8.95	0.00	309.46	0.00	34.583
7	100	210	3.93	3.93	12.81	0.00	309.46	0.00	24.149
8	100	210	3.93	3.93	17.35	0.00	309.46	0.00	17.841
9	100	210	3.93	3.93	22.53	0.00	309.46	0.00	13.736
10	100	210	3.93	3.93	28.35	0.00	309.46	0.00	10.914
11	100	210	3.93	3.93	34.81	0.00	309.46	0.00	8.891
12	100	210	3.93	3.93	41.88	0.00	309.46	0.00	7.390
13	100	210	3.93	3.93	49.55	0.00	309.46	0.00	6.245
14	100	210	3.93	3.93	57.82	0.00	309.46	0.00	5.352

nº	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
15	100	210	3.93	3.93	66.67	0.00	309.46	0.00	4.641
16	100	210	3.93	3.93	76.09	0.00	309.46	0.00	4.067
17	100	210	3.93	3.93	86.07	0.00	309.46	0.00	3.595
18	100	210	3.93	3.93	96.60	0.00	309.46	0.00	3.204
19	100	210	3.93	3.93	107.66	0.00	309.46	0.00	2.874
20	100	210	3.93	3.93	119.24	0.00	309.46	0.00	2.595
21	100	210	3.93	3.93	131.33	0.00	309.46	0.00	2.356
22	100	210	3.93	3.93	-190.79	0.00	-309.46	0.00	1.622
23	100	210	3.93	3.93	-174.66	0.00	-309.46	0.00	1.772
24	100	210	3.93	3.93	-159.60	0.00	-309.46	0.00	1.939
25	100	210	3.93	3.93	-145.63	0.00	-309.46	0.00	2.125
26	100	210	3.93	3.93	-132.75	0.00	-309.46	0.00	2.331
27	100	210	3.93	3.93	-120.99	0.00	-309.46	0.00	2.558
28	100	210	3.93	3.93	-110.35	0.00	-309.46	0.00	2.804
29	100	210	3.93	3.93	-100.84	0.00	-309.46	0.00	3.069
30	100	210	3.93	3.93	-100.84	0.00	-309.46	0.00	3.069
31	100	210	3.93	3.93	-91.38	0.00	-309.46	0.00	3.386
32	100	210	3.93	3.93	-82.78	0.00	-309.46	0.00	3.738
33	100	210	3.93	3.93	-75.04	0.00	-309.46	0.00	4.124
34	100	210	3.93	3.93	-68.16	0.00	-309.46	0.00	4.540
35	100	210	3.93	3.93	-68.16	0.00	-309.46	0.00	4.540
36	100	210	3.93	3.93	-55.37	0.00	-309.46	0.00	5.589
37	100	210	3.93	3.93	-43.88	0.00	-309.46	0.00	7.053
38	100	210	3.93	3.93	-33.69	0.00	-309.46	0.00	9.186
39	100	210	3.93	3.93	-24.82	0.00	-309.46	0.00	12.467
40	100	210	3.93	3.93	-17.29	0.00	-309.46	0.00	17.902
41	100	210	3.93	3.93	-11.10	0.00	-309.46	0.00	27.892
42	100	210	3.93	3.93	-6.26	0.00	-309.46	0.00	49.445
43	100	210	3.93	3.93	-2.79	0.00	-309.46	0.00	110.936
44	100	210	3.93	3.93	-0.70	0.00	-309.46	0.00	442.490
45	100	210	3.93	3.93	0.00	0.00	0.00	0.00	1000.000

Sperone

n°	В	Н	Afi	Afs	M	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	200	7.85	7.85	262.84	0.00	585.05	0.00	2.226

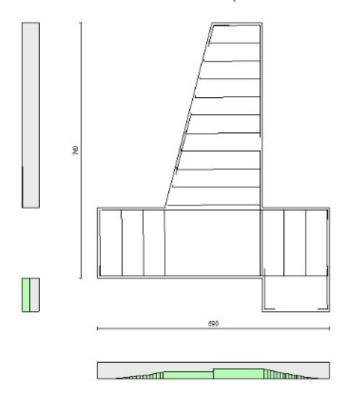


Figura 16 – Paramento (Inviluppo)

10.1.6. Verifiche a taglio

Simbologia adottata

I۹	Indica	sezione

Y ordinata sezione espressa in [m]
B larghezza sezione espresso in [cm]
H altezza sezione espressa in [cm]
A_{sw} area ferri a taglio espresso in [cmq]

cotqθ inclinazione delle bielle compresse, θ inclinazione dei puntoni di calcestruzzo

V_{Rcd} resistenza di progetto a 'taglio compressione' espressa in [kN]

V_{Rsd} resistenza di progetto a 'taglio trazione' espressa in [kN]

V_{Rd} resistenza di progetto a taglio espresso in [kN]. Per elementi con armature

trasversali resistenti al taglio (A_{sw}>0.0) V_{Rd}=min(V_{Rcd}, V_{Rsd}).

T taglio agente espressa in [kN]

FS fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

n°	В	Н	A _{sw}	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	150	0.00		0.00	0.00	369.48	0.00	100.000
2	100	152	0.00		0.00	0.00	374.26	0.33	1129.587
3	100	154	0.00		0.00	0.00	379.05	0.67	565.508

n°	В	Н	A _{sw}	cotθ	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
4	100	156	0.00		0.00	0.00	383.83	1.02	377.471
5	100	156	0.00		0.00	0.00	383.83	9.51	40.360
6	100	159	0.00		0.00	0.00	389.49	9.51	40.955
7	100	161	0.00		0.00	0.00	395.14	9.51	41.550
8	100	164	0.00		0.00	0.00	400.80	9.51	42.145
9	100	166	0.00		0.00	0.00	406.46	9.51	42.741
10	100	169	0.00		0.00	0.00	412.12	9.51	43.336
11	100	171	0.00		0.00	0.00	417.79	9.51	43.931
12	100	174	0.00		0.00	0.00	423.45	9.51	44.527
13	100	176	0.00		0.00	0.00	429.11	9.51	45.122
14	100	179	0.00		0.00	0.00	434.78	9.51	45.718
15	100	182	0.00		0.00	0.00	440.45	9.51	46.314
16	100	184	0.00		0.00	0.00	446.12	9.51	46.911
17	100	187	0.00		0.00	0.00	451.79	9.51	47.507
18	100	189	0.00		0.00	0.00	457.47	9.51	48.104
19	100	192	0.00		0.00	0.00	463.14	9.51	48.701
20	100	194	0.00		0.00	0.00	468.82	9.51	49.298
21	100	197	0.00		0.00	0.00	474.51	9.51	49.895
22	100	199	0.00		0.00	0.00	480.19	9.61	49.985
23	100	202	0.00		0.00	0.00	485.88	10.21	47.598
24	100	204	0.00		0.00	0.00	491.57	10.82	45.432
25	100	207	0.00		0.00	0.00	497.26	11.44	43.458
26	100	209	0.00		0.00	0.00	502.96	12.08	41.650
27	100	212	0.00		0.00	0.00	508.66	12.72	39.990
28	100	214	0.00		0.00	0.00	514.37	13.37	38.459
29	100	217	0.00		0.00	0.00	520.07	14.04	37.043
30	100	219	0.00		0.00	0.00	525.79	14.72	35.730
31	100	222	0.00		0.00	0.00	531.50	15.40	34.508
32	100	224	0.00		0.00	0.00	537.22	16.10	33.369
33	100	227	0.00		0.00	0.00	542.94	16.81	32.304
34	100	229	0.00		0.00	0.00	548.67	17.53	31.306
35	100	232	0.00		0.00	0.00	554.40	18.26	30.369
36	100	234	0.00		0.00	0.00	560.14	19.00	29.488
37	100	237	0.00		0.00	0.00	565.88	19.75	28.658
38	100	239	0.00		0.00	0.00	571.62	20.51	27.867
39	100	242	0.00		0.00	0.00	577.37	22.09	26.133
40	100	244	0.00		0.00	0.00	583.12	23.83	24.474
41	100	247	0.00		0.00	0.00	588.88	25.65	22.956
42	100	247	0.00		0.00	0.00	588.88	28.64	20.559
43	100	249	0.00		0.00	0.00	593.75	30.08	19.737
44	100	251	0.00		0.00	0.00	598.62	31.57	18.964
45	100	253	0.00		0.00	0.00	603.50	33.09	18.237

n°	В	Н	Asw	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
46	100	253	0.00		0.00	0.00	603.50	86.99	6.938
47	100	256	0.00		0.00	0.00	608.92	88.73	6.862
48	100	258	0.00		0.00	0.00	614.36	90.54	6.786
49	100	260	0.00		0.00	0.00	619.80	92.39	6.708
50	100	263	0.00		0.00	0.00	625.24	94.30	6.630
51	100	265	0.00		0.00	0.00	630.69	96.26	6.552
52	100	267	0.00		0.00	0.00	636.14	98.28	6.473
53	100	270	0.00		0.00	0.00	641.59	100.34	6.394
54	100	272	0.00		0.00	0.00	647.05	102.47	6.315
55	100	275	0.00		0.00	0.00	652.52	104.64	6.236
56	100	277	0.00		0.00	0.00	657.99	106.87	6.157
57	100	279	0.00		0.00	0.00	663.46	109.15	6.078
58	100	279	0.00		0.00	0.00	663.46	267.54	2.480
59	100	281	0.00		0.00	0.00	668.55	269.70	2.479
60	100	284	0.00		0.00	0.00	673.63	271.91	2.477
61	100	286	0.00		0.00	0.00	678.72	274.17	2.476
62	100	288	0.00		0.00	0.00	683.82	276.47	2.473
63	100	290	0.00		0.00	0.00	688.91	278.81	2.471

Fondazione

n°	В	н	Λ	cotθ	V	V_{Rsd}	V_{Rd}	Т	FS
11			Asw	COLO	V _{Rcd}			-	гэ
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	210	0.00		0.00	0.00	489.74	0.00	100.000
2	100	210	0.00		0.00	0.00	489.74	7.30	67.116
3	100	210	0.00		0.00	0.00	489.74	14.48	33.833
4	100	210	0.00		0.00	0.00	489.74	21.54	22.741
5	100	210	0.00		0.00	0.00	489.74	28.48	17.198
6	100	210	0.00		0.00	0.00	489.74	35.30	13.874
7	100	210	0.00		0.00	0.00	489.74	42.00	11.659
8	100	210	0.00		0.00	0.00	489.74	48.59	10.079
9	100	210	0.00		0.00	0.00	489.74	55.06	8.895
10	100	210	0.00		0.00	0.00	489.74	61.41	7.975
11	100	210	0.00		0.00	0.00	489.74	67.64	7.240
12	100	210	0.00		0.00	0.00	489.74	73.75	6.640
13	100	210	0.00		0.00	0.00	489.74	79.75	6.141
14	100	210	0.00		0.00	0.00	489.74	85.62	5.720
15	100	210	0.00		0.00	0.00	489.74	91.38	5.359
16	100	210	0.00		0.00	0.00	489.74	97.02	5.048
17	100	210	0.00		0.00	0.00	489.74	102.54	4.776
18	100	210	0.00		0.00	0.00	489.74	107.94	4.537
19	100	210	0.00		0.00	0.00	489.74	113.23	4.325

n°	В	Н	A _{sw}	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
20	100	210	0.00		0.00	0.00	489.74	118.39	4.137
21	100	210	0.00		0.00	0.00	489.74	123.44	3.967
22	100	210	0.00		0.00	0.00	489.74	-174.20	2.811
23	100	210	0.00		0.00	0.00	489.74	-162.99	3.005
24	100	210	0.00		0.00	0.00	489.74	-151.67	3.229
25	100	210	0.00		0.00	0.00	489.74	-140.24	3.492
26	100	210	0.00		0.00	0.00	489.74	-128.70	3.805
27	100	210	0.00		0.00	0.00	489.74	-117.05	4.184
28	100	210	0.00		0.00	0.00	489.74	-105.30	4.651
29	100	210	0.00		0.00	0.00	489.74	-93.43	5.242
30	100	210	0.00		0.00	0.00	489.74	-119.79	4.088
31	100	210	0.00		0.00	0.00	489.74	-109.47	4.474
32	100	210	0.00		0.00	0.00	489.74	-99.08	4.943
33	100	210	0.00		0.00	0.00	489.74	-88.61	5.527
34	100	210	0.00		0.00	0.00	489.74	-78.05	6.275
35	100	210	0.00		0.00	0.00	489.74	-134.35	3.645
36	100	210	0.00		0.00	0.00	489.74	-121.44	4.033
37	100	210	0.00		0.00	0.00	489.74	-108.42	4.517
38	100	210	0.00		0.00	0.00	489.74	-95.29	5.140
39	100	210	0.00		0.00	0.00	489.74	-82.03	5.970
40	100	210	0.00		0.00	0.00	489.74	-68.65	7.133
41	100	210	0.00		0.00	0.00	489.74	-55.16	8.879
42	100	210	0.00		0.00	0.00	489.74	-41.55	11.787
43	100	210	0.00		0.00	0.00	489.74	-27.82	17.606
44	100	210	0.00		0.00	0.00	489.74	-13.97	35.063
45	100	210	0.00		0.00	0.00	489.74	0.00	100.000

Sperone

	n°	В	Н	A _{sw}	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
		[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
Γ	1	100	200	0.00		0.00	0.00	469.97	394.07	1.193

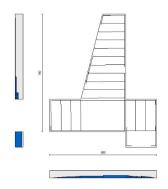


Figura 17 – Paramento (Inviluppo)

10.1.7. Verifica delle tensioni

Simbologia adottata

^		
n°	indice	sezione

Y ordinata sezione, espressa in [m]

B larghezza sezione, espresso in [cm]

H altezza sezione, espressa in [cm]

Afi area ferri inferiori, espresso in [cmq]

Afs area ferri superiori, espressa in [cmq]

M momento agente, espressa in [kNm]
N sforzo normale agente, espressa in [kN]

σc tensione di compressione nel cls, espressa in [kPa]

ofi tensione nei ferri inferiori, espressa in [kPa]

σfs tensione nei ferri superiori, espressa in [kPa]

Combinazioni SLER

Paramento

Tensione massima di compressione nel calcestruzzo 12209[kPa]

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	150	2.01	0.79	0.00	0.00	0 (10)	0 (10)	0 (10)
2	100	152	2.01	0.79	-0.02	3.09	2 (10)	31 (10)	30 (10)
3	100	154	2.01	0.79	-0.07	6.22	4 (10)	63 (10)	58 (10)
4	100	156	2.01	0.79	-0.15	9.39	6 (10)	95 (10)	85 (10)
5	100	156	2.01	0.79	-0.15	9.39	6 (10)	95 (10)	85 (10)
6	100	159	0.00	0.79	0.33	13.20	9 (10)	113 (10)	0 (10)
7	100	161	0.00	0.79	0.77	17.07	12 (10)	134 (10)	0 (10)
8	100	164	0.00	0.79	1.16	21.00	15 (10)	156 (10)	0 (10)
9	100	166	0.00	0.79	1.49	25.00	18 (10)	180 (10)	0 (10)

n°	В	Н	Afi	Afs	М	N	σ C	σ f i	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
10	100	169	0.00	0.79	1.78	29.05	21 (10)	205 (10)	0 (10)
11	100	171	0.00	0.79	2.01	33.17	23 (10)	232 (10)	0 (10)
12	100	174	0.00	0.79	2.19	37.34	26 (10)	261 (10)	0 (10)
13	100	176	0.00	0.79	2.32	41.58	28 (10)	290 (10)	0 (10)
14	100	179	0.00	0.79	2.40	45.88	30 (10)	321 (10)	0 (10)
15	100	182	0.00	0.79	2.42	50.23	32 (10)	353 (10)	0 (10)
16	100	184	0.00	0.79	2.39	54.65	34 (10)	385 (10)	0 (10)
17	100	187	0.00	0.79	2.30	59.13	36 (10)	419 (10)	0 (10)
18	100	189	0.00	0.79	2.15	63.67	37 (10)	453 (10)	0 (10)
19	100	192	0.00	0.79	1.95	68.27	39 (10)	489 (10)	0 (10)
20	100	194	0.00	0.79	1.68	72.93	40 (10)	525 (10)	0 (10)
21	100	197	0.00	0.79	1.36	77.66	42 (10)	561 (10)	0 (10)
22	100	199	0.00	0.79	0.98	82.44	43 (10)	599 (10)	0 (10)
23	100	202	0.00	0.79	0.54	87.28	44 (10)	637 (10)	0 (10)
24	100	204	0.00	0.79	0.04	92.19	45 (10)	675 (10)	0 (10)
25	100	207	0.00	0.79	-0.53	97.15	48 (10)	714 (10)	0 (10)
26	100	209	0.00	0.79	-1.15	102.18	50 (10)	754 (10)	0 (10)
27	100	212	0.00	0.79	-1.84	107.27	53 (10)	793 (10)	0 (10)
28	100	214	0.00	0.79	-2.60	112.42	56 (10)	834 (10)	0 (10)
29	100	217	0.00	0.79	-3.42	117.62	59 (10)	874 (10)	0 (10)
30	100	219	0.00	0.79	-4.31	122.89	61 (10)	915 (10)	0 (10)
31	100	222	0.00	0.79	-5.26	128.22	64 (10)	957 (10)	0 (10)
32	100	224	0.00	0.79	-6.28	133.61	67 (10)	998 (10)	0 (10)
33	100	227	0.00	0.79	-7.37	139.07	70 (10)	1040 (10)	0 (10)
34	100	229	0.00	0.79	-8.52	144.58	73 (10)	1082 (10)	0 (10)
35	100	232	2.01	0.00	-9.75	150.15	76 (10)	0 (10)	813 (10)
36	100	234	2.01	0.00	-11.05	155.79	79 (10)	0 (10)	822 (10)
37	100	237	2.01	0.00	-12.42	161.48	82 (10)	0 (10)	830 (10)
38	100	239	2.01	0.00	-13.86	167.24	85 (10)	0 (10)	837 (10)
39	100	242	2.01	0.00	-15.32	173.05	87 (10)	0 (10)	845 (10)
40	100	244	2.01	0.00	-16.74	178.93	90 (10)	0 (10)	855 (10)
41	100	247	2.01	0.00	-18.11	184.87	93 (10)	0 (10)	865 (10)
42	100	247	2.01	0.00	-18.11	184.87	93 (10)	0 (10)	865 (10)
43	100	249	2.01	0.00	-18.42	189.93	94 (10)	0 (10)	886 (10)
44	100	251	2.01	0.00	-18.69	195.04	96 (10)	0 (10)	907 (10)
45	100	253	2.01	0.00	-18.92	200.19	97 (10)	0 (10)	929 (10)
46	100	253	2.01	0.00	-18.92	200.19	97 (10)	0 (10)	929 (10)
47	100	256	0.00	1.57	-15.80	205.98	95 (10)	1411 (10)	0 (10)
48	100	258	0.00	1.57	-12.61	211.81	93 (10)	1390 (10)	0 (10)
49	100	260	0.00	1.57	-9.37	217.71	92 (10)	1368 (10)	0 (10)
50	100	263	0.00	1.57	-6.06	223.65	90 (10)		0 (10)
51	100	265	0.00	1.57	-2.68	229.65	89 (10)	1328 (10)	0 (10)

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
52	100	267	0.00	1.57	0.77	235.70	89 (10)	1309 (10)	0 (10)
53	100	270	0.00	1.57	4.29	241.81	93 (10)	1290 (10)	0 (10)
54	100	272	0.00	1.57	7.89	247.97	98 (10)	1271 (10)	0 (10)
55	100	275	0.00	1.57	11.56	254.18	102 (10)	1253 (10)	0 (10)
56	100	277	0.00	1.57	15.33	260.45	106 (10)	1235 (10)	0 (10)
57	100	279	0.00	1.57	19.17	266.77	110 (10)	1217 (10)	0 (10)
58	100	279	0.00	1.57	19.17	266.77	110 (10)	1217 (10)	0 (10)
59	100	281	0.00	1.57	31.90	272.68	121 (10)	1103 (10)	0 (10)
60	100	284	0.00	1.57	44.71	278.64	132 (10)	991 (10)	0 (10)
61	100	286	0.00	1.57	57.60	284.64	142 (10)	883 (10)	0 (10)
62	100	288	0.00	1.57	70.58	290.69	152 (10)	778 (10)	0 (10)
63	100	290	0.00	1.57	83.64	296.79	162 (10)	675 (10)	0 (10)

Fondazione

Tensione massima di compressione nel calcestruzzo 12209[kPa]

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	210	3.93	0.00	0.00	0.00	0 (10)	0 (10)	0 (10)
2	100	210	3.93	0.00	0.24	0.00	2 (10)	308 (10)	0 (10)
3	100	210	3.93	0.00	0.96	0.00	6 (10)	1233 (10)	0 (10)
4	100	210	3.93	0.00	2.17	0.00	15 (10)	2773 (10)	0 (10)
5	100	210	3.93	0.00	3.85	0.00	26 (10)	4930 (10)	0 (10)
6	100	210	3.93	3.93	6.02	0.00	40 (10)	7699 (10)	349 (10)
7	100	210	3.93	3.93	8.67	0.00	57 (10)	11085 (10)	503 (10)
8	100	210	3.93	3.93	11.79	0.00	77 (10)	15086 (10)	685 (10)
9	100	210	3.93	3.93	15.40	0.00	101 (10)	19701 (10)	894 (10)
10	100	210	3.93	3.93	19.49	0.00	128 (10)	24930 (10)	1131 (10)
11	100	210	3.93	3.93	24.06	0.00	158 (10)	30773 (10)	1396 (10)
12	100	210	3.93	3.93	29.11	0.00	191 (10)	37229 (10)	1689 (10)
13	100	210	3.93	3.93	34.63	0.00	228 (10)	44299 (10)	2010 (10)
14	100	210	3.93	3.93	40.64	0.00	267 (10)	51981 (10)	2359 (10)
15	100	210	3.93	3.93	47.12	0.00	310 (10)	60276 (10)	2735 (10)
16	100	210	3.93	3.93	54.09	0.00	355 (10)	69184 (10)	3139 (10)
17	100	210	3.93	3.93	61.53	0.00	404 (10)	78704 (10)	3571 (10)
18	100	210	3.93	3.93	69.45	0.00	456 (10)	88835 (10)	4031 (10)
19	100	210	3.93	3.93	77.85	0.00	512 (10)	99578 (10)	4519 (10)
20	100	210	3.93	3.93	86.73	0.00	570 (10)	110932 (10)	5034 (10)
21	100	210	3.93	3.93	96.08	0.00	631 (10)	122897 (10)	5577 (10)

n°	В	Н	Afi	Afs	M	N	σ C	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
22	100	210	3.93	3.93	-71.69	0.00	471 (10)	4161 (10)	91699 (10)
23	100	210	3.93	3.93	-65.67	0.00	432 (10)	3812 (10)	84003 (10)
24	100	210	3.93	3.93	-60.21	0.00	396 (10)	3495 (10)	77013 (10)
25	100	210	3.93	3.93	-55.30	0.00	363 (10)	3210 (10)	70729 (10)
26	100	210	3.93	3.93	-50.93	0.00	335 (10)	2956 (10)	65150 (10)
27	100	210	3.93	3.93	-47.13	0.00	310 (10)	2735 (10)	60279 (10)
28	100	210	3.93	3.93	-43.87	0.00	288 (10)	2546 (10)	56113 (10)
29	100	210	3.93	3.93	-41.17	0.00	270 (10)	2389 (10)	52655 (10)
30	100	210	3.93	3.93	-41.17	0.00	270 (10)	2389 (10)	52655 (10)
31	100	210	3.93	3.93	-37.83	0.00	249 (10)	2196 (10)	48387 (10)
32	100	210	3.93	3.93	-34.90	0.00	229 (10)	2026 (10)	44645 (10)
33	100	210	3.93	3.93	-32.39	0.00	213 (10)	1880 (10)	41429 (10)
34	100	210	3.93	3.93	-30.29	0.00	199 (10)	1758 (10)	38739 (10)
35	100	210	3.93	3.93	-30.29	0.00	199 (10)	1758 (10)	38739 (10)
36	100	210	3.93	3.93	-24.53	0.00	161 (10)	1424 (10)	31382 (10)
37	100	210	3.93	3.93	-19.39	0.00	127 (10)	1125 (10)	24799 (10)
38	100	210	3.93	3.93	-14.85	0.00	98 (10)	862 (10)	18989 (10)
39	100	210	3.93	3.93	-10.91	0.00	72 (10)	633 (10)	13953 (10)
40	100	210	3.93	3.93	-7.58	0.00	50 (10)	440 (10)	9691 (10)
41	100	210	3.93	3.93	-4.85	0.00	32 (10)	281 (10)	6203 (10)
42	100	210	3.93	3.93	-2.73	0.00	18 (10)	158 (10)	3490 (10)
43	100	210	3.93	3.93	-1.21	0.00	8 (10)	70 (10)	1551 (10)
44	100	210	3.93	3.93	-0.30	0.00	2 (10)	18 (10)	388 (10)
45	100	210	3.93	3.93	0.00	0.00	0 (10)	0 (10)	0 (10)

Sperone

Tensione massima di compressione nel calcestruzzo 12209[kPa]

Tensione massima di trazione dell'acciaio 360000 [kPa]

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	200	7.85	7.85	186.03	0.00	940 (10)	126293 (10)	9754 (10)

Combinazioni SLEF

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo 20349[kPa]

n°	В	Н	Afi	Afs	М	N	σ C	σ f i	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	150	2.01	0.79	0.00	0.00	0 (11)	0 (11)	0 (11)
2	100	152	2.01	0.79	-0.02	3.09	2 (11)	31 (11)	30 (11)
3	100	154	2.01	0.79	-0.07	6.22	4 (11)	63 (11)	58 (11)
4	100	156	2.01	0.79	-0.15	9.39	6 (11)	95 (11)	85 (11)
5	100	156	2.01	0.79	-0.15	9.39	6 (11)	95 (11)	85 (11)
6	100	159	0.00	0.79	-0.17	13.20	9 (11)	130 (11)	0 (11)
7	100	161	0.00	0.79	-0.23	17.07	11 (11)	166 (11)	0 (11)
8	100	164	0.00	0.79	-0.34	21.00	14 (11)	202 (11)	0 (11)
9	100	166	0.00	0.79	-0.51	25.00	16 (11)	240 (11)	0 (11)
10	100	169	0.00	0.79	-0.72	29.05	19 (11)	278 (11)	0 (11)
11	100	171	0.00	0.79	-0.99	33.17	21 (11)	318 (11)	0 (11)
12	100	174	0.00	0.79	-1.31	37.34	24 (11)	357 (11)	0 (11)
13	100	176	0.00	0.79	-1.68	41.58	27 (11)	398 (11)	0 (11)
14	100	179	0.00	0.79	-2.10	45.88	29 (11)	438 (11)	0 (11)
15	100	182	0.00	0.79	-2.58	50.23	32 (11)	480 (11)	0 (11)
16	100	184	0.00	0.79	-3.12	54.65	35 (11)	522 (11)	0 (11)
17	100	187	0.00	0.79	-3.70	59.13	38 (11)	564 (11)	0 (11)
18	100	189	0.00	0.79	-4.35	63.67	41 (11)	606 (11)	0 (11)
19	100	192	0.00	0.79	-5.06	68.27	44 (11)	649 (11)	0 (11)
20	100	194	0.00	0.79	-5.82	72.93	47 (11)	693 (11)	0 (11)
21	100	197	0.00	0.79	-6.64	77.66	50 (11)	736 (11)	0 (11)
22	100	199	0.00	0.79	-7.52	82.44	53 (11)	780 (11)	0 (11)
23	100	202	0.00	0.79	-8.46	87.28	56 (11)	824 (11)	0 (11)
24	100	204	0.00	0.79	-9.46	92.19	59 (11)	868 (11)	0 (11)
25	100	207	0.00	0.79	-10.53	97.15	62 (11)	912 (11)	0 (11)
26	100	209	0.00	0.79	-11.66	102.18	65 (11)	957 (11)	0 (11)
27	100	212	0.00	0.79	-12.85	107.27	68 (11)	1002 (11)	0 (11)
28	100	214	0.00	0.79		112.42	71 (11)	1046 (11)	0 (11)
29	100	217	0.00	0.79		117.62	74 (11)		0 (11)
30	100	219	0.00	0.79		122.89	77 (11)	1136 (11)	0 (11)
31	100	222	0.00	0.79	-18.26	128.22	80 (11)	1181 (11)	0 (11)
32	100	224	0.00	0.79	-19.78	133.61	83 (11)	1227 (11)	0 (11)
33	100	227	0.00	0.79		139.07	86 (11)	1272 (11)	0 (11)
34	100	229	0.00	0.79	-23.03	144.58	89 (11)	1317 (11)	0 (11)
35	100	232	2.01	0.00	-24.76	150.15	93 (11)	0 (11)	576 (11)
36	100	234	2.01	0.00	-26.55	155.79	96 (11)	0 (11)	582 (11)
37	100	237	2.01	0.00	-28.42	161.48	99 (11)	0 (11)	587 (11)
38	100	239	2.01	0.00	-30.36	167.24	102 (11)	0 (11)	592 (11)
39	100	242	2.01	0.00	-32.32	173.05	105 (11)	0 (11)	598 (11)
40	100	244	2.01	0.00	-34.24	178.93	108 (11)	0 (11)	605 (11)
41	100	247	2.01	0.00		184.87	111 (11)	0 (11)	613 (11)
42	100	247	2.01	0.00	-36.11	184.87	111 (11)	0 (11)	613 (11)

n°	В	Н	Afi	Afs	M	N	σ C	σ f i	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
43	100	249	2.01	0.00	-37.49	189.93	113 (11)	0 (11)	623 (11)
44	100	251	2.01	0.00	-38.83	195.04	115 (11)	0 (11)	635 (11)
45	100	253	2.01	0.00	-40.12	200.19	117 (11)	0 (11)	647 (11)
46	100	253	2.01	0.00	-40.12	200.19	117 (11)	0 (11)	647 (11)
47	100	256	0.00	1.57	-40.85	205.98	118 (11)	1739 (11)	0 (11)
48	100	258	0.00	1.57	-41.52	211.81	119 (11)	1761 (11)	0 (11)
49	100	260	0.00	1.57	-42.12	217.71	121 (11)	1782 (11)	0 (11)
50	100	263	0.00	1.57	-42.66	223.65	122 (11)	1802 (11)	0 (11)
51	100	265	0.00	1.57	-43.14	229.65	123 (11)	1821 (11)	0 (11)
52	100	267	0.00	1.57	-43.54	235.70	124 (11)	1839 (11)	0 (11)
53	100	270	0.00	1.57	-43.87	241.81	125 (11)	1857 (11)	0 (11)
54	100	272	0.00	1.57	-44.12	247.97	126 (11)	1873 (11)	0 (11)
55	100	275	0.00	1.57	-44.30	254.18	127 (11)	1889 (11)	0 (11)
56	100	277	0.00	1.57	-44.38	260.45	128 (11)	1903 (11)	0 (11)
57	100	279	0.00	1.57	-44.39	266.77	129 (11)	1917 (11)	0 (11)
58	100	279	0.00	1.57	-44.39	266.77	129 (11)	1917 (11)	0 (11)
59	100	281	0.00	1.57	-42.49	272.68	129 (11)	1910 (11)	0 (11)
60	100	284	0.00	1.57	-40.52	278.64	128 (11)	1902 (11)	0 (11)
61	100	286	0.00	1.57	-38.46	284.64	127 (11)	1894 (11)	0 (11)
62	100	288	0.00	1.57	-36.32	290.69	127 (11)	1886 (11)	0 (11)
63	100	290	0.00	1.57	-34.10	296.79	126 (11)	1878 (11)	0 (11)

Fondazione

Tensione massima di compressione nel calcestruzzo 20349[kPa]

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	210	3.93	0.00	0.00	0.00	0 (11)	0 (11)	0 (11)
2	100	210	3.93	0.00	0.05	0.00	0 (11)	63 (11)	0 (11)
3	100	210	3.93	0.00	0.21	0.00	1 (11)	267 (11)	0 (11)
4	100	210	3.93	0.00	0.50	0.00	3 (11)	637 (11)	0 (11)
5	100	210	3.93	0.00	0.94	0.00	6 (11)	1197 (11)	0 (11)
6	100	210	3.93	3.93	1.54	0.00	10 (11)	1970 (11)	89 (11)
7	100	210	3.93	3.93	2.33	0.00	15 (11)	2981 (11)	135 (11)
8	100	210	3.93	3.93	3.33	0.00	22 (11)	4254 (11)	193 (11)
9	100	210	3.93	3.93	4.55	0.00	30 (11)	5814 (11)	264 (11)
10	100	210	3.93	3.93	6.01	0.00	39 (11)	7684 (11)	349 (11)
11	100	210	3.93	3.93	7.73	0.00	51 (11)	9889 (11)	449 (11)
12	100	210	3.93	3.93	9.73	0.00	64 (11)	12452 (11)	565 (11)

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
13	100	210	3.93	3.93	12.04	0.00	79 (11)	15397 (11)	699 (11)
14	100	210	3.93	3.93	14.66	0.00	96 (11)	18750 (11)	851 (11)
15	100	210	3.93	3.93	17.62	0.00	116 (11)	22533 (11)	1023 (11)
16	100	210	3.93	3.93	20.93	0.00	138 (11)	26771 (11)	1215 (11)
17	100	210	3.93	3.93	24.62	0.00	162 (11)	31489 (11)	1429 (11)
18	100	210	3.93	3.93	28.70	0.00	189 (11)	36710 (11)	1666 (11)
19	100	210	3.93	3.93	33.19	0.00	218 (11)	42458 (11)	1927 (11)
20	100	210	3.93	3.93	38.12	0.00	250 (11)	48758 (11)	2213 (11)
21	100	210	3.93	3.93	43.49	0.00	286 (11)	55633 (11)	2525 (11)
22	100	210	3.93	3.93	48.80	0.00	321 (11)	62416 (11)	2832 (11)
23	100	210	3.93	3.93	45.20	0.00	297 (11)	57809 (11)	2623 (11)
24	100	210	3.93	3.93	41.56	0.00	273 (11)	53157 (11)	2412 (11)
25	100	210	3.93	3.93	37.90	0.00	249 (11)	48481 (11)	2200 (11)
26	100	210	3.93	3.93	34.24	0.00	225 (11)	43801 (11)	1988 (11)
27	100	210	3.93	3.93	30.60	0.00	201 (11)	39140 (11)	1776 (11)
28	100	210	3.93	3.93	26.99	0.00	177 (11)	34518 (11)	1566 (11)
29	100	210	3.93	3.93	23.42	0.00	154 (11)	29957 (11)	1359 (11)
30	100	210	3.93	3.93	23.42	0.00	154 (11)	29957 (11)	1359 (11)
31	100	210	3.93	3.93	20.69	0.00	136 (11)	26460 (11)	1201 (11)
32	100	210	3.93	3.93	18.01	0.00	118 (11)	23038 (11)	1045 (11)
33	100	210	3.93	3.93	15.40	0.00	101 (11)	19704 (11)	894 (11)
34	100	210	3.93	3.93	12.88	0.00	85 (11)	16471 (11)	747 (11)
35	100	210	3.93	3.93	12.88	0.00	85 (11)	16471 (11)	747 (11)
36	100	210	3.93	3.93	10.68	0.00	70 (11)	13667 (11)	620 (11)
37	100	210	3.93	3.93	8.64	0.00	57 (11)	11056 (11)	502 (11)
38	100	210	3.93	3.93	6.77	0.00	44 (11)	8661 (11)	393 (11)
39	100	210	3.93	3.93	5.09	0.00	33 (11)	6508 (11)	295 (11)
40	100	210	3.93	3.93	3.61	0.00	24 (11)	4620 (11)	210 (11)
41	100	210	3.93	3.93	2.36	0.00	16 (11)		
42	100	210	3.93	3.93	1.36	0.00	9 (11)	1736 (11)	79 (11)
43	100	210	3.93	3.93	0.62	0.00	4 (11)	787 (11)	36 (11)
44	100	210	3.93	3.93	0.16	0.00	1 (11)	201 (11)	9 (11)
45	100	210	3.93	3.93	0.00	0.00	0 (11)	0 (11)	0 (11)

Sperone

Tensione massima di compressione nel calcestruzzo 20349[kPa]

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	200	7.85	7.85	178.85	0.00	903	121419	9378
							(11)	(11)	(11)

Combinazioni SLEQ

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo 9157[kPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	150	2.01	0.79	0.00	0.00	0 (12)	0 (12)	0 (12)
2	100	152	2.01	0.79	-0.01	3.09	2 (12)	31 (12)	30 (13)
3	100	154	2.01	0.79	-0.04	6.22	4 (12)	63 (12)	59 (13)
4	100	156	2.01	0.79	-0.08	9.39	6 (12)	95 (12)	87 (13)
5	100	156	2.01	0.79	-0.08	9.39	6 (12)	95 (12)	87 (13)
6	100	159	0.00	0.79	-0.29	13.20	9 (12)	134 (12)	0 (12)
7	100	161	0.00	0.79	-0.48	17.07	12 (12)	174 (12)	0 (12)
8	100	164	0.00	0.79	-0.72	21.00	14 (12)	214 (12)	0 (12)
9	100	166	0.00	0.79	-1.01	25.00	17 (12)	255 (12)	0 (12)
10	100	169	0.00	0.79	-1.35	29.05	20 (12)	297 (12)	0 (12)
11	100	171	0.00	0.79	-1.74	33.17	23 (12)	339 (12)	0 (12)
12	100	174	0.00	0.79	-2.18	37.34	26 (12)	381 (12)	0 (12)
13	100	176	0.00	0.79	-2.68	41.58	29 (12)	424 (12)	0 (12)
14	100	179	0.00	0.79	-3.23	45.88	32 (12)	468 (12)	0 (12)
15	100	182	0.00	0.79	-3.83	50.23	35 (12)	512 (12)	0 (12)
16	100	184	0.00	0.79	-4.49	54.65	38 (12)	556 (12)	0 (12)
17	100	187	0.00	0.79	-5.21	59.13	41 (12)	600 (12)	0 (12)
18	100	189	0.00	0.79	-5.98	63.67	44 (12)	645 (12)	0 (12)
19	100	192	0.00	0.79	-6.81	68.27	47 (12)	690 (12)	0 (12)
20	100	194	0.00	0.79	-7.69	72.93	50 (12)	735 (12)	0 (12)
21	100	197	0.00	0.79	-8.64	77.66	53 (12)	780 (12)	0 (12)
22	100	199	0.00	0.79	-9.65	82.44	56 (12)	825 (12)	0 (12)
23	100	202	0.00	0.79	-10.71	87.28	59 (12)	871 (12)	0 (12)
24	100	204	0.00	0.79	-11.84	92.19	62 (12)	916 (12)	0 (12)
25	100	207	0.00	0.79	-13.03	97.15	65 (12)	962 (12)	0 (12)
26	100	209	0.00	0.79	-14.28	102.18	68 (12)	1008 (12)	0 (12)
27	100	212	0.00	0.79	-15.60	107.27	71 (12)	1054 (12)	0 (12)
28	100	214	0.00	0.79	-16.98	112.42	75 (12)	1099 (12)	0 (12)
29	100	217	0.00	0.79	-18.42	117.62	78 (12)	1145 (12)	0 (12)

n°	В	Н	Afi	Afs	M	N	σ C	σ f i	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
30	100	219	0.00	0.79	-19.94	122.89	81 (12)	1191 (12)	0 (12)
31	100	222	0.00	0.79	-21.51	128.22	84 (12)	1238 (12)	0 (12)
32	100	224	0.00	0.79	-23.16	133.61	87 (12)	1284 (12)	0 (12)
33	100	227	0.00	0.79	-24.87	139.07	90 (12)	1330 (12)	0 (12)
34	100	229	0.00	0.79	-26.65	144.58	93 (12)	1376 (12)	0 (12)
35	100	232	2.01	0.00	-14.50	150.15	97 (12)	0 (12)	738 (13)
36	100	234	2.01	0.00	-15.45	155.79	100 (12)	0 (12)	754 (13)
37	100	237	2.01	0.00	-16.42	161.48	103 (12)	0 (12)	769 (13)
38	100	239	2.01	0.00	-17.43	167.24	106 (12)	0 (12)	784 (13)
39	100	242	2.01	0.00	-18.44	173.05	109 (12)	0 (12)	800 (13)
40	100	244	2.01	0.00	-19.39	178.93	112 (12)	0 (12)	817 (13)
41	100	247	2.01	0.00	-20.28	184.87	115 (12)	0 (12)	835 (13)
42	100	247	2.01	0.00	-20.28	184.87	115 (12)	0 (12)	835 (13)
43	100	249	2.01	0.00	-20.97	189.93	117 (12)	0 (12)	851 (13)
44	100	251	2.01	0.00	-21.60	195.04	119 (12)	0 (12)	868 (13)
45	100	253	2.01	0.00	-22.17	200.19	122 (12)	0 (12)	886 (13)
46	100	253	2.01	0.00	-22.17	200.19	122 (12)	0 (12)	886 (13)
47	100	256	0.00	1.57	-47.11	205.98	123 (12)	1821 (12)	0 (12)
48	100	258	0.00	1.57	-48.74	211.81	126 (12)	1854 (12)	0 (12)
49	100	260	0.00	1.57	-50.31	217.71	128 (12)	1885 (12)	0 (12)
50	100	263	0.00	1.57	-51.81	223.65	130 (12)	1916 (12)	0 (12)
51	100	265	0.00	1.57	-53.25	229.65	132 (12)	1945 (12)	0 (12)
52	100	267	0.00	1.57	-54.62	235.70	134 (12)	1972 (12)	0 (12)
53	100	270	0.00	1.57	-55.91	241.81	135 (12)	1999 (12)	0 (12)
54	100	272	0.00	1.57	-57.12	247.97	137 (12)	2024 (12)	0 (12)
55	100	275	0.00	1.57	-58.26	254.18	139 (12)	2048 (12)	0 (12)
56	100	277	0.00	1.57	-59.31	260.45	140 (12)	2071 (12)	0 (12)
57	100	279	0.00	1.57	-60.28	266.77	141 (12)	2092 (12)	0 (12)
58	100	279	0.00	1.57	-60.28	266.77	141 (12)	2092 (12)	0 (12)
59	100	281	0.00	1.57	-61.09	272.68	143 (12)	2111 (12)	0 (12)
60	100	284	0.00	1.57	-61.83	278.64	144 (12)	2130 (12)	0 (12)
61	100	286	0.00	1.57	-62.48	284.64	145 (12)	2147 (12)	0 (12)
62	100	288	0.00	1.57	-63.05	290.69	146 (12)	2163 (12)	0 (12)
63	100	290	0.00	1.57	-63.53	296.79	147 (12)	2178 (12)	0 (12)

Fondazione

Tensione massima di compressione nel calcestruzzo 9157[kPa]

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	210	3.93	0.00	0.00	0.00	0 (12)	0 (12)	0 (12)
2	100	210	3.93	0.00	0.11	0.00	1 (13)	139 (13)	0 (12)
3	100	210	3.93	0.00	0.45	0.00	3 (13)	574 (13)	0 (12)
4	100	210	3.93	0.00	1.04	0.00	7 (13)	1327 (13)	0 (12)
5	100	210	3.93	0.00	1.89	0.00	13 (13)	2422 (13)	0 (12)
6	100	210	3.93	3.93	3.04	0.00	20 (13)	3883 (13)	176 (13)
7	100	210	3.93	3.93	4.48	0.00	29 (13)	5735 (13)	260 (13)
8	100	210	3.93	3.93	6.26	0.00	41 (13)	8001 (13)	363 (13)
9	100	210	3.93	3.93	8.37	0.00	55 (13)	10705 (13)	486 (13)
10	100	210	3.93	3.93	10.84	0.00	71 (13)	13871 (13)	629 (13)
11	100	210	3.93	3.93	13.70	0.00	90 (13)	17523 (13)	795 (13)
12	100	210	3.93	3.93	16.95	0.00	111 (13)	21684 (13)	984 (13)
13	100	210	3.93	3.93	20.62	0.00	136 (13)	26380 (13)	1197 (13)
14	100	210	3.93	3.93	24.73	0.00	162 (13)	31632 (13)	1435 (13)
15	100	210	3.93	3.93	29.29	0.00	192 (13)	37467 (13)	1700 (13)
16	100	210	3.93	3.93	34.33	0.00	226 (13)	43906 (13)	1992 (13)
17	100	210	3.93	3.93	39.85	0.00	262 (13)	50975 (13)	2313 (13)
18	100	210	3.93	3.93	45.89	0.00	302 (13)	58697 (13)	2664 (13)
19	100	210	3.93	3.93	52.46	0.00	345 (13)	67095 (13)	3045 (13)
20	100	210	3.93	3.93	59.57	0.00	391 (13)	76195 (13)	3458 (13)
21	100	210	3.93	3.93	67.25	0.00	442 (13)	86020 (13)	3903 (13)
22	100	210	3.93	3.93	78.92	0.00	519 (12)	100945 (12)	4581 (12)
23	100	210	3.93	3.93	72.91	0.00	479 (12)	93263 (12)	4232 (12)
24	100	210	3.93	3.93	67.00	0.00	440 (12)	85700 (12)	3889 (12)
25	100	210	3.93	3.93	61.20	0.00	402 (12)	78283 (12)	3552 (12)
26	100	210	3.93	3.93	55.54	0.00	365 (12)	71039 (12)	3224 (12)
27	100	210	3.93	3.93	50.03	0.00	329 (12)	63995 (12)	2904 (12)
28	100	210	3.93	3.93	44.70	0.00	294 (12)	57176 (12)	2595 (12)
29	100	210	3.93	3.93	39.57	0.00	260 (12)	50610 (12)	2297 (12)
30	100	210	3.93	3.93	39.57		260 (12)		
31	100	210	3.93	3.93	35.32		232 (12)	45172 (12)	2050 (12)
32	100	210	3.93	3.93	31.24	0.00	205 (12)	39959 (12)	
33	100	210	3.93	3.93	27.35		180 (12)	34987 (12)	
34	100	210	3.93	3.93	23.67	0.00	156 (12)	30273 (12)	1374 (12)
35	100	210	3.93	3.93	23.67		156 (12)	30273 (12)	
36	100	210	3.93	3.93	19.49		128 (12)	24929 (12)	
37	100	210	3.93	3.93	15.65		103 (12)		908 (12)
38	100	210	3.93	3.93	12.18		80 (12)		
39	100	210	3.93	3.93	9.09		60 (12)		
40	100	210	3.93	3.93	6.41			8198 (12)	
41	100	210	3.93	3.93	4.16	0.00	27 (12)	5327 (12)	242 (12)

n°	В	Н	Afi	Afs	M	N	σC	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
42	100	210	3.93	3.93	2.38	0.00	16 (12)	3042 (12)	138 (12)
43	100	210	3.93	3.93	1.07	0.00	7 (12)	1372 (12)	62 (12)
44	100	210	3.93	3.93	0.27	0.00	2 (12)	348 (12)	16 (12)
45	100	210	3.93	3.93	0.00	0.00	0 (12)	0 (12)	0 (12)

Sperone

Tensione massima di compressione nel calcestruzzo 9157[kPa]

Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	В	Н	Afi	Afs	M	N	σ C	σfi	σ fs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	200	7.85	7.85	191.02	0.00	965 (13)	129681 (13)	10016 (13)

10.1.8. Verifica a fessurazione

Simbologia adottata

n° indice sezione

Y ordinata sezione espressa in [m]
B larghezza sezione espresso in [cm]
H altezza sezione espressa in [cm]
Af area ferri zona tesa espresso in [cmq]
Aeff area efficace espressa in [cmq]
M momento agente espressa in [kNm]

Mpf momento di prima fessurazione espressa in [kNm]

 ϵ deformazione espresso in %

Sm spaziatura tra le fessure espressa in [mm] w apertura delle fessure espressa in [mm]

Combinazioni SLEF

Paramento

n°	В	Н	Af	Aeff	М	Mpf	3	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	150	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (11)
2	100	152	0.00	0.00	-0.02	-18.69	0.0000	0.00	0.000 (11)
3	100	154	0.00	0.00	-0.07	-38.61	0.0000	0.00	0.000 (11)
4	100	156	0.00	0.00	-0.15	-59.80	0.0000	0.00	0.000 (11)

n°	В	Н	Af	Aeff	М	Mpf	ε	Sm	W
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
5	100	156	0.00	0.00	-0.15	-59.80	0.0000	0.00	0.000 (11)
6	100	159	0.00	0.00	-0.17	-47.10	0.0000	0.00	0.000 (11)
7	100	161	0.00	0.00	-0.23	-51.72	0.0000	0.00	0.000 (11)
8	100	164	0.00	0.00	-0.34	-64.50	0.0000	0.00	0.000 (11)
9	100	166	0.00	0.00	-0.51	-82.37	0.0000	0.00	0.000 (11)
10	100	169	0.00	0.00	-0.72	-103.98	0.0000	0.00	0.000 (11)
11	100	171	0.00	0.00	-0.99	-128.67	0.0000	0.00	0.000 (11)
12	100	174	0.00	0.00	-1.31	-156.08	0.0000	0.00	0.000 (11)
13	100	176	0.00	0.00	-1.68	-186.03	0.0000	0.00	0.000 (11)
14	100	179	0.00	0.00	-2.10	-218.41	0.0000	0.00	0.000 (11)
15	100	182	0.00	0.00	-2.58	-253.18	0.0000	0.00	0.000 (11)
16	100	184	0.00	0.00	-3.12	-290.33	0.0000	0.00	0.000 (11)
17	100	187	0.00	0.00	-3.70	-329.86	0.0000	0.00	0.000 (11)
18	100	189	0.00	0.00	-4.35	-371.79	0.0000	0.00	0.000 (11)
19	100	192	0.00	0.00	-5.06	-416.16	0.0000	0.00	0.000 (11)
20	100	194	0.00	0.00	-5.82	-463.00	0.0000	0.00	0.000 (11)
21	100	197	0.00	0.00	-6.64	-512.37	0.0000	0.00	0.000 (11)
22	100	199	0.00	0.00	-7.52	-564.32	0.0000	0.00	0.000 (11)
23	100	202	0.00	0.00	-8.46	-618.89	0.0000	0.00	0.000 (11)
24	100	204	0.00	0.00	-9.46	-676.15	0.0000	0.00	0.000 (11)
25	100	207	0.00	0.00	-10.53	-736.15	0.0000	0.00	0.000 (11)
26	100	209	0.00	0.00	-11.66	-798.95	0.0000	0.00	0.000 (11)
27	100	212	0.00	0.00	-12.85	-864.63	0.0000	0.00	0.000 (11)
28	100	214	0.00	0.00	-14.10	-933.24	0.0000	0.00	0.000 (11)
29	100	217	0.00	0.00	-15.42	-1004.85	0.0000	0.00	0.000 (11)
30	100	219	0.00	0.00	-16.81	-1079.53	0.0000	0.00	0.000 (11)
31	100	222	0.00	0.00	-18.26	-1157.34	0.0000	0.00	0.000 (11)
32	100	224	0.00	0.00	-19.78	-1238.36	0.0000	0.00	0.000 (11)
33	100	227	0.00	0.00	-21.37	-1322.65	0.0000	0.00	0.000 (11)
34	100	229	0.00	0.00	-23.03	-1410.29	0.0000	0.00	0.000 (11)
35	100	232	0.00	0.00	-24.76	-1512.62	0.0000	0.00	0.000 (11)
36	100	234	0.00	0.00	-26.55	-1607.86	0.0000	0.00	0.000 (11)
37	100	237	0.00	0.00	-28.42	-1706.68	0.0000	0.00	0.000 (11)
38	100	239	0.00	0.00	-30.36	-1809.18	0.0000	0.00	0.000 (11)
39	100	242	0.00	0.00	-32.32	-1909.77	0.0000	0.00	0.000 (11)
40	100	244	0.00	0.00	-34.24	-2001.06	0.0000	0.00	0.000 (11)
41	100	247	0.00	0.00	-36.11	-2082.50	0.0000	0.00	0.000 (11)
42	100	247	0.00	0.00	-36.11	-2082.50	0.0000	0.00	0.000 (11)
43	100	249	0.00	0.00	-37.49	-2125.94	0.0000	0.00	0.000 (11)
44	100	251	0.00	0.00	-38.83	-2162.50	0.0000	0.00	0.000 (11)
45	100	253	0.00	0.00	-40.12	-2192.28	0.0000	0.00	0.000 (11)
46	100	253	0.00	0.00	-40.12	-2192.28	0.0000	0.00	0.000 (11)

n°	В	Н	Af	Aeff	М	Mpf	3	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
47	100	256	0.00	0.00	-40.85	-2131.07	0.0000	0.00	0.000 (11)
48	100	258	0.00	0.00	-41.52	-2088.22	0.0000	0.00	0.000 (11)
49	100	260	0.00	0.00	-42.12	-2043.17	0.0000	0.00	0.000 (11)
50	100	263	0.00	0.00	-42.66	-1996.14	0.0000	0.00	0.000 (11)
51	100	265	0.00	0.00	-43.14	-1947.33	0.0000	0.00	0.000 (11)
52	100	267	0.00	0.00	-43.54	-1896.95	0.0000	0.00	0.000 (11)
53	100	270	0.00	0.00	-43.87	-1845.17	0.0000	0.00	0.000 (11)
54	100	272	0.00	0.00	-44.12	-1792.14	0.0000	0.00	0.000 (11)
55	100	275	0.00	0.00	-44.30	-1738.02	0.0000	0.00	0.000 (11)
56	100	277	0.00	0.00	-44.38	-1682.92	0.0000	0.00	0.000 (11)
57	100	279	0.00	0.00	-44.39	-1626.97	0.0000	0.00	0.000 (11)
58	100	279	0.00	0.00	-44.39	-1626.97	0.0000	0.00	0.000 (11)
59	100	281	0.00	0.00	-42.49	-1477.92	0.0000	0.00	0.000 (11)
60	100	284	0.00	0.00	-40.52	-1340.77	0.0000	0.00	0.000 (11)
61	100	286	0.00	0.00	-38.46	-1213.75	0.0000	0.00	0.000 (11)
62	100	288	0.00	0.00	-36.32	-1095.42	0.0000	0.00	0.000 (11)
63	100	290	0.00	0.00	-34.10	-984.60	0.0000	0.00	0.000 (11)

Fondazione

n°	В	Н	Af	Aeff	М	Mpf	ε	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	210	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (11)
2	100	210	0.00	0.00	0.05	0.00	0.0000	0.00	0.000 (11)
3	100	210	3.93	1500.00	0.21	1675.88	0.0000	0.00	0.000 (11)
4	100	210	3.93	1500.00	0.50	1675.88	0.0000	0.00	0.000 (11)
5	100	210	3.93	1500.00	0.94	1675.88	0.0000	0.00	0.000 (11)
6	100	210	3.93	1500.00	1.54	1683.91	0.0000	0.00	0.000 (11)
7	100	210	3.93	1500.00	2.33	1683.91	0.0000	0.00	0.000 (11)
8	100	210	3.93	1500.00	3.33	1683.91	0.0000	0.00	0.000 (11)
9	100	210	3.93	1500.00	4.55	1683.91	0.0000	0.00	0.000 (11)
10	100	210	3.93	1500.00	6.01	1683.91	0.0000	0.00	0.000 (11)
11	100	210	3.93	1500.00	7.73	1683.91	0.0000	0.00	0.000 (11)
12	100	210	3.93	1500.00	9.73	1683.91	0.0000	0.00	0.000 (11)
13	100	210	3.93	1500.00	12.04	1683.91	0.0000	0.00	0.000 (11)
14	100	210	3.93	1500.00	14.66	1683.91	0.0000	0.00	0.000 (11)
15	100	210	3.93	1500.00	17.62	1683.91	0.0000	0.00	0.000 (11)
16	100	210	3.93	1500.00	20.93	1683.91	0.0000	0.00	0.000 (11)
17	100	210	3.93	1500.00	24.62	1683.91	0.0000	0.00	0.000 (11)
18	100	210	3.93	1500.00	28.70	1683.91	0.0000	0.00	0.000 (11)

n°	В	Н	Af	Aeff	M	Mpf	ε	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
19	100	210	3.93	1500.00	33.19	1683.91	0.0000	0.00	0.000 (11)
20	100	210	3.93	1500.00	38.12	1683.91	0.0000	0.00	0.000 (11)
21	100	210	3.93	1500.00	43.49	1683.91	0.0000	0.00	0.000 (11)
22	100	210	3.93	1500.00	48.80	1683.91	0.0000	0.00	0.000 (11)
23	100	210	3.93	1500.00	45.20	1683.91	0.0000	0.00	0.000 (11)
24	100	210	3.93	1500.00	41.56	1683.91	0.0000	0.00	0.000 (11)
25	100	210	3.93	1500.00	37.90	1683.91	0.0000	0.00	0.000 (11)
26	100	210	3.93	1500.00	34.24	1683.91	0.0000	0.00	0.000 (11)
27	100	210	3.93	1500.00	30.60	1683.91	0.0000	0.00	0.000 (11)
28	100	210	3.93	1500.00	26.99	1683.91	0.0000	0.00	0.000 (11)
29	100	210	3.93	1500.00	23.42	1683.91	0.0000	0.00	0.000 (11)
30	100	210	3.93	1500.00	23.42	1683.91	0.0000	0.00	0.000 (11)
31	100	210	3.93	1500.00	20.69	1683.91	0.0000	0.00	0.000 (11)
32	100	210	3.93	1500.00	18.01	1683.91	0.0000	0.00	0.000 (11)
33	100	210	3.93	1500.00	15.40	1683.91	0.0000	0.00	0.000 (11)
34	100	210	3.93	1500.00	12.88	1683.91	0.0000	0.00	0.000 (11)
35	100	210	3.93	1500.00	12.88	1683.91	0.0000	0.00	0.000 (11)
36	100	210	3.93	1500.00	10.68	1683.91	0.0000	0.00	0.000 (11)
37	100	210	3.93	1500.00	8.64	1683.91	0.0000	0.00	0.000 (11)
38	100	210	3.93	1500.00	6.77	1683.91	0.0000	0.00	0.000 (11)
39	100	210	3.93	1500.00	5.09	1683.91	0.0000	0.00	0.000 (11)
40	100	210	3.93	1500.00	3.61	1683.91	0.0000	0.00	0.000 (11)
41	100	210	3.93	1500.00	2.36	1683.91	0.0000	0.00	0.000 (11)
42	100	210	3.93	1500.00	1.36	1683.91	0.0000	0.00	0.000 (11)
43	100	210	3.93	1500.00	0.62	1683.91	0.0000	0.00	0.000 (11)
44	100	210	3.93	1500.00	0.16	1683.91	0.0000	0.00	0.000 (11)
45	100	210	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (11)

Sperone

n	0	В	Н	Af	Aeff	M	Mpf	3	Sm	w
		[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
	1	100	200	7.85	1500.00	178.85	1551.84	0.0000	0.00	0.000 (11)

Combinazioni SLEQ

Paramento

n°	В	Н	Af	Aeff	М	Mpf	3	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	150	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (12)
2	100	152	0.00	0.00	-0.02	-18.69	0.0000	0.00	0.000 (12)
3	100	154	0.00	0.00	-0.07	-38.61	0.0000	0.00	0.000 (12)
4	100	156	0.00	0.00	-0.15	-59.80	0.0000	0.00	0.000 (12)
5	100	156	0.00	0.00	-0.15	-59.80	0.0000	0.00	0.000 (12)
6	100	159	0.00	0.00	-0.29	-85.93	0.0000	0.00	0.000 (12)
7	100	161	0.00	0.00	-0.48	-114.37	0.0000	0.00	0.000 (12)
8	100	164	0.00	0.00	-0.72	-144.74	0.0000	0.00	0.000 (12)
9	100	166	0.00	0.00	-1.01	-177.12	0.0000	0.00	0.000 (12)
10	100	169	0.00	0.00	-1.35	-211.56	0.0000	0.00	0.000 (12)
11	100	171	0.00	0.00	-1.74	-248.14	0.0000	0.00	0.000 (12)
12	100	174	0.00	0.00	-2.18	-286.91	0.0000	0.00	0.000 (12)
13	100	176	0.00	0.00	-2.68	-327.94	0.0000	0.00	0.000 (12)
14	100	179	0.00	0.00	-3.23	-371.30	0.0000	0.00	0.000 (12)
15	100	182	0.00	0.00	-3.83	-417.06	0.0000	0.00	0.000 (12)
16	100	184	0.00	0.00	-4.49	-465.29	0.0000	0.00	0.000 (12)
17	100	187	0.00	0.00	-5.21	-516.05	0.0000	0.00	0.000 (12)
18	100	189	0.00	0.00	-5.98	-569.42	0.0000	0.00	0.000 (12)
19	100	192	0.00	0.00	-6.81	-625.48	0.0000	0.00	0.000 (12)
20	100	194	0.00	0.00	-7.69	-684.28	0.0000	0.00	0.000 (12)
21	100	197	0.00	0.00	-8.64	-745.90	0.0000	0.00	0.000 (12)
22	100	199	0.00	0.00	-9.65	-810.43	0.0000	0.00	0.000 (12)
23	100	202	0.00	0.00	-10.71	-877.92	0.0000	0.00	0.000 (12)
24	100	204	0.00	0.00	-11.84	-948.47	0.0000	0.00	0.000 (12)
25	100	207	0.00	0.00	-13.03	-1022.14	0.0000	0.00	0.000 (12)
26	100	209	0.00	0.00	-14.28	-1099.00	0.0000	0.00	0.000 (12)
27	100	212	0.00	0.00	-15.60	-1179.15	0.0000	0.00	0.000 (12)
28	100	214	0.00	0.00	-16.98	-1262.66	0.0000	0.00	0.000 (12)
29	100	217	0.00	0.00	-18.42	-1349.60	0.0000	0.00	0.000 (12)
30	100	219	0.00	0.00	-19.94	-1440.05	0.0000	0.00	0.000 (12)
31	100	222	0.00	0.00	-21.51	-1534.10	0.0000	0.00	0.000 (12)
32	100	224	0.00	0.00	-23.16	-1631.84	0.0000	0.00	0.000 (12)
33	100	227	0.00	0.00	-24.87	-1733.33	0.0000	0.00	0.000 (12)
34	100	229	0.00	0.00	-26.65	-1838.66	0.0000	0.00	0.000 (12)
35	100	232	0.00	0.00	-28.51	-1963.45	0.0000	0.00	0.000 (12)
36	100	234	0.00	0.00	-30.43	-2077.61	0.0000	0.00	0.000 (12)

n°	В	Н	Af	Aeff	M	Mpf	ε	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
37	100	237	0.00	0.00	-32.42	-2195.89	0.0000	0.00	0.000 (12)
38	100	239	0.00	0.00	-34.49	-2318.40	0.0000	0.00	0.000 (12)
39	100	242	0.00	0.00	-36.57	-2438.01	0.0000	0.00	0.000 (12)
40	100	244	0.00	0.00	-38.62	-2545.33	0.0000	0.00	0.000 (12)
41	100	247	0.00	0.00	-40.61	-2639.65	0.0000	0.00	0.000 (12)
42	100	247	0.00	0.00	-40.61	-2639.65	0.0000	0.00	0.000 (12)
43	100	249	0.00	0.00	-42.26	-2708.96	0.0000	0.00	0.000 (12)
44	100	251	0.00	0.00	-43.86	-2768.65	0.0000	0.00	0.000 (12)
45	100	253	0.00	0.00	-45.43	-2818.76	0.0000	0.00	0.000 (12)
46	100	253	0.00	0.00	-45.43	-2818.76	0.0000	0.00	0.000 (12)
47	100	256	0.00	0.00	-47.11	-2833.95	0.0000	0.00	0.000 (12)
48	100	258	0.00	0.00	-48.74	-2867.27	0.0000	0.00	0.000 (12)
49	100	260	0.00	0.00	-50.31	-2889.85	0.0000	0.00	0.000 (12)
50	100	263	0.00	0.00	-51.81	-2902.21	0.0000	0.00	0.000 (12)
51	100	265	0.00	0.00	-53.25	-2904.94	0.0000	0.00	0.000 (12)
52	100	267	0.00	0.00	-54.62	-2898.68	0.0000	0.00	0.000 (12)
53	100	270	0.00	0.00	-55.91	-2884.09	0.0000	0.00	0.000 (12)
54	100	272	0.00	0.00	-57.12	-2861.85	0.0000	0.00	0.000 (12)
55	100	275	0.00	0.00	-58.26	-2832.61	0.0000	0.00	0.000 (12)
56	100	277	0.00	0.00	-59.31	-2797.05	0.0000	0.00	0.000 (12)
57	100	279	0.00	0.00	-60.28	-2755.76	0.0000	0.00	0.000 (12)
58	100	279	0.00	0.00	-60.28	-2755.76	0.0000	0.00	0.000 (12)
59	100	281	0.00	0.00	-61.09	-2712.89	0.0000	0.00	0.000 (12)
60	100	284	0.00	0.00	-61.83	-2666.07	0.0000	0.00	0.000 (12)
61	100	286	0.00	0.00	-62.48	-2615.71	0.0000	0.00	0.000 (12)
62	100	288	0.00	0.00	-63.05	-2562.21	0.0000	0.00	0.000 (12)
63	100	290	0.00	0.00	-63.53	-2505.93	0.0000	0.00	0.000 (12)

Fondazione

n°	В	Н	Af	Aeff	М	Mpf	ε	Sm	W
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	210	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (12)
2	100	210	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (12)
3	100	210	0.00	0.00	0.02	0.00	0.0000	0.00	0.000 (12)
4	100	210	0.00	0.00	0.08	0.00	0.0000	0.00	0.000 (12)
5	100	210	3.93	1500.00	0.21	1675.88	0.0000	0.00	0.000 (12)
6	100	210	3.93	1500.00	0.42	1683.91	0.0000	0.00	0.000 (12)
7	100	210	3.93	1500.00	0.75	1683.91	0.0000	0.00	0.000 (12)
8	100	210	3.93	1500.00	1.21	1683.91	0.0000	0.00	0.000 (12)

n°	В	Н	Af	Aeff	M	Mpf	ε	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
9	100	210	3.93	1500.00	1.83	1683.91	0.0000	0.00	0.000 (12)
10	100	210	3.93	1500.00	2.64	1683.91	0.0000	0.00	0.000 (12)
11	100	210	3.93	1500.00	3.65	1683.91	0.0000	0.00	0.000 (12)
12	100	210	3.93	1500.00	4.89	1683.91	0.0000	0.00	0.000 (12)
13	100	210	3.93	1500.00	6.39	1683.91	0.0000	0.00	0.000 (12)
14	100	210	3.93	1500.00	8.16	1683.91	0.0000	0.00	0.000 (12)
15	100	210	3.93	1500.00	10.24	1683.91	0.0000	0.00	0.000 (12)
16	100	210	3.93	1500.00	12.64	1683.91	0.0000	0.00	0.000 (12)
17	100	210	3.93	1500.00	15.39	1683.91	0.0000	0.00	0.000 (12)
18	100	210	3.93	1500.00	18.51	1683.91	0.0000	0.00	0.000 (12)
19	100	210	3.93	1500.00	22.03	1683.91	0.0000	0.00	0.000 (12)
20	100	210	3.93	1500.00	25.97	1683.91	0.0000	0.00	0.000 (12)
21	100	210	3.93	1500.00	30.35	1683.91	0.0000	0.00	0.000 (12)
22	100	210	3.93	1500.00	78.92	1683.91	0.0000	0.00	0.000 (12)
23	100	210	3.93	1500.00	72.91	1683.91	0.0000	0.00	0.000 (12)
24	100	210	3.93	1500.00	67.00	1683.91	0.0000	0.00	0.000 (12)
25	100	210	3.93	1500.00	61.20	1683.91	0.0000	0.00	0.000 (12)
26	100	210	3.93	1500.00	55.54	1683.91	0.0000	0.00	0.000 (12)
27	100	210	3.93	1500.00	50.03	1683.91	0.0000	0.00	0.000 (12)
28	100	210	3.93	1500.00	44.70	1683.91	0.0000	0.00	0.000 (12)
29	100	210	3.93	1500.00	39.57	1683.91	0.0000	0.00	0.000 (12)
30	100	210	3.93	1500.00	39.57	1683.91	0.0000	0.00	0.000 (12)
31	100	210	3.93	1500.00	35.32	1683.91	0.0000	0.00	0.000 (12)
32	100	210	3.93	1500.00	31.24	1683.91	0.0000	0.00	0.000 (12)
33	100	210	3.93	1500.00	27.35	1683.91	0.0000	0.00	0.000 (12)
34	100	210	3.93	1500.00	23.67	1683.91	0.0000	0.00	0.000 (12)
35	100	210	3.93	1500.00	23.67	1683.91	0.0000	0.00	0.000 (12)
36	100	210	3.93	1500.00	19.49	1683.91	0.0000	0.00	0.000 (12)
37	100	210	3.93	1500.00	15.65	1683.91	0.0000	0.00	0.000 (12)
38	100	210	3.93	1500.00	12.18	1683.91	0.0000	0.00	0.000 (12)
39	100	210	3.93	1500.00	9.09	1683.91	0.0000	0.00	0.000 (12)
40	100	210	3.93	1500.00	6.41	1683.91	0.0000	0.00	0.000 (12)
41	100	210	3.93	1500.00	4.16	1683.91	0.0000	0.00	0.000 (12)
42	100	210	3.93	1500.00	2.38	1683.91	0.0000	0.00	0.000 (12)
43	100	210	3.93	1500.00	1.07	1683.91	0.0000	0.00	0.000 (12)
44	100	210	3.93	1500.00	0.27	1683.91	0.0000	0.00	0.000 (12)
45	100	210	0.00	0.00	0.00	0.00	0.0000	0.00	0.000 (12)

Sperone

Apertura limite fessure w_{lim}=0.20

n°	В	Н	Af	Aeff	M	Mpf	3	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	200	7.85	1500.00	180.91	1551.84	0.0000	0.00	0.000 (12)

11. DICHIARAZIONI SECONDO N.T.C. 2018 (PUNTO 10.2)

Analisi e verifiche svolte con l'ausilio di codici di calcolo

Il sottoscritto, in qualità di calcolatore delle opere in progetto, dichiara quanto segue.

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

Il calcolo dei muri di sostegno viene eseguito secondo le seguenti fasi:

- Calcolo della spinta del terreno
- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale
- Calcolo delle sollecitazioni sia del muro che della fondazione, progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del D.M. 17/07/2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

diga foranea del porto di Castellammare del Golfo (TP)

Relazione di calcolo muro paraonde

Origine e caratteristiche dei codici di calcolo

Titolo MAX - Analisi e Calcolo Muri di Sostegno

Versione 15.0

Produttore Aztec Informatica srl, Casali del Manco - loc. Casole Bruzio (CS)

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, io sottoscritto asserisco che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.